Finite strain

Ductile deformation - Finite strain

Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns:
- 1) A body is forced to change its position; it undergoes translation.
- 2) A body is forced to change its orientation; it undergoes rotation.
- 3) A body is forced to change size; it undergoes dilation.
- 4) A body is forced to change shape; it undergoes distortion.

These movement component movements are often described in terms of slip or flow. The distinction is scale-dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock.
The four basic movements may be combined.
- During rigid body deformation, rocks are translated and/or rotated in such a way that original size and shape are preserved.
- If instead of moving the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks.
Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body. Therefore, stress and strain are interdependent. Particle displacements produce dilatation (change in size, positive for expansion and negative for shrinking) and/or distortion, a change in shape. The final shape, after cumulative strain(s), is what geologists can observe. Strain is a geometric concept intended to quantify the relative displacement and subsequent change in configuration of the particles in a given dimension of the body, i.e. measuring strain is quantifying deformation from an “initial” shape to a “final” shape (both initial and final may be intermediate steps of a longer deformation evolution). A strain analysis consists in quantifying the changes in shape and size due to deformation. Thus, strain analysis involves determining the (1) strain orientation, (2) strain magnitude, and (3) patterns of strain variation. Finite strain is the measurable parameter that assigns a quantity to the total change in shape of a deformed object compared to its original shape. Hence strain is dimensionless. This information helps understanding the physical displacements that produced structures found in the field. In practice, dilatation is very difficult to measure so that geologists usually speak of strain for distortion only.

Strain analysis

Homogeneous - heterogeneous strain
The concept of finite strain is useful for uniform and homogeneous deformation.

Definition
Strain is homogeneous if all parts of a body suffer distortion and/or dilatation characterised by the same amount, type and direction of displacement. A standard criterion is that straight and parallel lines and planes remain straight and parallel. Circles become ellipses. Strain is heterogeneous if distortion and/or dilatation differ from place to place in the body. Straight lines and planes become curved and parallel lines and planes do not remain parallel. Circles become complex, closed forms. This definition emphasizes the important difference between strain and structure. Structures such as folds or veins would not exist without the presence of “layered” heterogeneities, i.e. the juxtaposition of dissimilar materials.

One may reduce heterogeneous deformation to homogeneous domains by decreasing the size of the studied volume. A homogeneous deformation on one scale may be part of a heterogeneous deformation on a different scale. Heterogeneous strain distributed with different characteristics in different parts of a rock or rock mass is partitioned. As a consequence, structures and strain refer to different reference frames, possibly geographical for structures, local for strain: the fabric of the rock, which includes foliation and lineation.
Continuum assumption

Strain compatibility is a requirement for the rock to remain coherent during deformation. However, lines and planes may also be broken during heterogeneous and discontinuous deformation. Strain variations can be due to the different mechanical behaviours of components of a rock or association of rocks. For example, the presence of relatively rigid components can result in more intense strain being partitioned into weaker parts of the rock rather than being evenly distributed. Strain analysis in rocks is essentially dedicated to homogeneous and continuous deformation, on the considered scale.

Progressive deformation until finite strain

Progressive deformation refers to the series of movements that affect a body from its initial undeformed stage to its deformed state. Progressive deformation can be continuous or discontinuous.

Deformation path

The state of strain of an object is the total strain acquired by this object up to the time of measurement, i.e. the sum of all different shapes and positions it has undergone. The sequence of strain states through which the object passed during progressive deformation defines the strain path. Deformation paths follow successive stages during straining and can only be expressed relative to an external coordinate system. Each step that can be identified, i.e. each tiny division of the deformation path is an increment. The amount of deformation that occurs from one stage to the next is called incremental strain.

Infinitesimal strain

Each increment can be divided in a series of smaller and smaller increments. When the duration tends to 0, the extremely small amount of strain is termed infinitesimal, also described as instantaneous. We will see that the orientation of instantaneous strain axes may be very different than that of finite strain axes.

Strain history

The strain history is the sum of many strain increments, each of which being characterized by infinitesimal (instantaneous) characteristics. It is impossible to reconstruct if strain is perfectly homogeneous. Rock masses are heterogeneous, so that different parts register different parts of the strain history. The challenge is to combine these parts to understand the whole deformation evolution.

Finite strain

The sum of incremental strains, i.e. the total strain is the finite strain. Although all states of strain result from progressive deformation, the finite strain does not provide any information about the particular strain path that the body has experienced. A variety of strain paths may lead to the same finite strain.

Measurement of strain

If an object is deformed, the deformation magnitude depends on the size of the object as well as on the magnitude of the applied stress. To avoid this scale-dependence, strain is measured as normalized displacements expressed in scale-independent, dimensionless terms. Strain may be measured in two ways:
- By the change in length of a line: the linear strain or extension ε.
- By a change in the angle between two lines: the angular strain or shear strain γ.
Any strain geometry can be measured as a combination of these changes. The corresponding terms are defined as follows.

Length changes

Two parameters describe changes in length: longitudinal strain and stretch.

Longitudinal strain

Extension ε is given by the dimensionless ratio:
Finite strain $\varepsilon = (\ell - \ell_0)/\ell_0 = (\ell/\ell_0) - 1$ (1)

where ℓ_0 is the original length and ℓ the new length of a reference linear segment in a rock mass.

If $\ell > \ell_0$ \Rightarrow $\varepsilon > 0$ A positive value indicates elongation.
If $\ell < \ell_0$ \Rightarrow $\varepsilon < 0$ a negative value indicates shortening.

For an infinitesimal strain, we consider the one-dimensional deformation of an extensible axis Ox. P is a point at x_P from the origin O. When stretching the axis P comes to P' and $OP' = x_P + \Delta x$, with Δx being a linear function of x if stretching is homogeneous. Taking P very close to O, equation (1) becomes:

$$\varepsilon = \left[\left(x + \Delta x\right) - x\right]/x = \Delta x/x$$

The infinitesimal deformation at P is per definition

$$\varepsilon = \lim_{\Delta x \to 0} \left(\frac{\Delta x}{x}\right)$$

which is commonly written:

$$\varepsilon = d\ell/\ell$$ (2)

Stretch

For large-scale deformations the change in length of a line is generally given by the stretch S, which is the deformed length as a proportion of the undeformed length:

$$S = \ell/\ell_0 = 1 + \varepsilon$$ (3)

The stretch is also used to define the **natural strain**, which is logarithmic strain = $\ln(S)$

Quadratic elongation

The quadratic elongation λ is the standard measure of finite longitudinal strain. It is given by the square of the stretch:

$$\lambda = \left(\ell/\ell_0\right)^2 = (1 + \varepsilon)^2$$ (4)

Zero strain is given by $\lambda = 1$.

The **reciprocal** quadratic elongation $\lambda' = 1/\lambda$ is used sometimes.

Angular changes - Shear strain

Angular shear

The angle ψ called **angular shear** is defined by the change of an original right angle:

$$\psi = 90^\circ - (\alpha)$$ (5)
The sense of shear is anticlockwise or clockwise depending on the sense of angular change. \(\alpha \) is measured between two initially perpendicular lines. Therefore \(-90^\circ \leq \psi \leq +90^\circ\)

ATTENTION: anticlockwise and clockwise means sinistral and dextral, respectively, only and only when shearing refers to strike-slip movements. Otherwise, the sense depends on the direction of observation. It is then safer to specify top-to-.

The difficulty in rocks is to identify two lines that are known to be initially orthogonal.

Shear strain

The shear strain \(\gamma \) is the tangent to the angular shear:

\[
\gamma = \tan \psi
\]

The tangent of a very small angle is equal to the angle in radians so that for infinitesimal strain \(\psi = \gamma \).

In Cartesian coordinates \(\gamma = \Delta x/y \). This equation shows that shear strain involves an interaction between the coordinate axes.

Volume change

The volume change (dilatation) is given by:

\[
\Delta = (V - V_0)/V_0
\]

where \(V \) and \(V_0 \) are the volumes in the deformed and undeformed states, respectively. In two-dimensions, volume \(V \) is reduced to area \(A \).

- There is **expansion** if \(V > V_0 \).
- There is **contraction** if \(V < V_0 \).
For infinitesimal strain $\Delta A = dA/A$ and, in three dimensions $\Delta V = dV/V$.

Graphical representation

A diversity of methods has been designed to estimate finite strain in **tectonites** (a rock whose fabric reflects the deformation history). Using mostly the distortion of objects (e.g. ooids and fossils) or point distributions (e.g. quartz grain centers in quartzites) all methods try to estimate the shape and orientation of the strain ellipse/ellipsoid.

Strain ellipse

For sake of clarity, we first think in two dimensions.

Definition

A circle of unit radius (but it can be of any size) and flattened vertically parallel to the coordinate axis is homogeneously deformed into an ellipse with two major axes which, initially, were diameters of the circle. This **strain ellipse** is a two-dimensional, graphical concept to visualise the amount of linear and angular strain involved in the deformation of a rock. The radius of this ellipse is proportional to the stretch in any direction. Its longest and shortest radii, known as the **principal strain axes**, define the strain ellipse. In the considered coordinate-parallel flattening, these axes are vertical (short) and horizontal (long).

The two-dimensional strain of the plane in which the ellipse lies is defined by only three numbers:

- The dimensions of the strain ellipse.
- The orientation of the principal strain axes.

From equation (3), saving the subscript 2 for the three-dimensional case:

The length of the long principal strain axis, the **stretch axis**, is $1+\varepsilon_1 = \lambda_1$.

The length of the short principal strain axis, the **shortening axis**, is $1+\varepsilon_3 = \sqrt{\lambda_3}$.

The orientation is usually the anticlockwise angle between the abscissa and the longest principal strain axis.

There are two strain ellipses at any stage in the deformation: the **finite strain ellipse** represents the cumulative, total deformation; the **infinitesimal ellipse** represents the strain for an instant in time. In two dimensions, the **infinitesimal stretching axes** are the instantaneous direction of maximum elongation and the instantaneous direction of maximum shortening. They are therefore the lines that experience the fastest and slowest stretching rates of all possible line orientations at the considered increment.

In all cases the strain axes are perpendicular. They are also lines of zero shear strain.

Shape

The shape of the ellipse is the ratio of the principal axes:

$$R = \frac{(1+\varepsilon_1)}{(1+\varepsilon_3)}$$

(8)
It embodies the overall intensity of distortion. A graphical representation consists in plotting $1 + \varepsilon_1$ along the horizontal axis and $1 + \varepsilon_3$ along the vertical axis of a scaled coordinate system.

The diagonal line is the locus of ellipses remained as circles because they have undergone equal elongation or equal contraction in all directions, i.e. $1 + \varepsilon_1 = 1 + \varepsilon_3$. No ellipse plots above this line because $1 + \varepsilon_1$ is always greater or equal to $1 + \varepsilon_3$. Two more particular lines can be drawn: one vertical for which $\varepsilon_1 = 0$ and one horizontal for which $\varepsilon_3 = 0$. These two lines delimit three fields below the diagonal, where all possible strain ellipses are represented.

- The highest field (below the diagonal and above the horizontal line $1 + \varepsilon_3 = 1$) includes ellipses in which both principal strains are positive elongations.
- The rectangular field below the horizontal line and to the right of the vertical line includes ellipses in which $\varepsilon_1 > 0$ and $\varepsilon_3 < 0$.
- The triangle below the diagonal and to the left of the vertical line includes ellipses in which both ε_1 and ε_3 are negative shortenings.

Dilatation
The area of the strain ellipse is the product of the principal axes.

$$1 + \Delta = (1 + \varepsilon_1)(1 + \varepsilon_3)$$

Dilatation Δ is positive if the area increases, negative if it decreases.

Change in length with respect to the orientation of a line
The finite strain ellipse concentrically superimposed on the unstrained circle yields four intersection points. The two lines joining opposed points through the centre have suffered no net change in length: those two are the lines of no finite longitudinal strain. By symmetry, the finite strain axes bisect these lines. All lines in the two sectors containing the longest strain axis increased in length, all lines in the sectors containing the shortest strain axis shortened.
For the first infinitesimally small increment of the considered vertical flattening, the two lines of no incremental longitudinal strain are obviously inclined at 45° to the strain axes. With further shortening, the two material lines of initial zero longitudinal strain turn towards the horizontal axis while the strain ellipse lengthens along this axis and flattens along the vertical axis. Yet, at any given time during deformation, lines within 45° of the horizontal axis are lengthening and lines within 45° of the vertical axis are shortening. Therefore, there is some material in the strain ellipse that migrates through lines separating fields of shortening and lengthening as the ellipse flattens. The strain ellipse is consequently divided into fields in which material lines have had different histories:
- Within 45° to the vertical axis, lines have been shortened throughout their deformation history.
- Between the 45° line and the rotated initial lines of no finite longitudinal strain, material lines have undergone an initial shortening, followed by lengthening.
- Between the lines of no finite longitudinal strain, symmetrically with respect to the horizontal stretch axis, lines have been permanently elongated.

Note that for extremely large strain, these lines will tend towards fusion with the long axis. In addition, lines of no finite longitudinal strain do not exist if the strain involves negative or positive dilatation because then all lines have negative or positive stretch, respectively.

Application

If an initially circular structure becomes elliptical after deformation, the two main axes $k(1 + \varepsilon_1)$ and $k(1 + \varepsilon_2)$ can be directly measured. k is a constant, since the size of the original circle is unknown. The slope of the regression line through many long axis / short axis measurements gives the ellipticity R of the finite strain ellipse.

Rotational component of deformation

The only rotation considered in two-dimensions is around an axis perpendicular to the plane of observation, hence perpendicular to the two strain axes. The rotational part of deformation ω is the angular difference in orientation of the strain axes with respect to a reference line. One commonly use symbols as θ and θ' for orientation angles before and after deformation, respectively.

$$\omega = \theta' - \theta$$
Strain in three-dimensions: strain ellipsoid

We use and derive in three dimensions measures of strain analogous to those in two dimensions.

Definition

In a ductilely deforming medium, the material flows from the high-stressed to the low-stressed domains. At a scale at which deformation can be considered to be continuous and homogeneous, natural deformation in three dimensions is described as the change in shape of an imaginary or material sphere with a unit radius \(r = 1 \). This unit sphere becomes an ellipsoid whose shape and orientation describe the strain. The equation describing this ellipsoid is:

\[
\frac{x^2}{(1+\varepsilon_1)^2} + \frac{y^2}{(1+\varepsilon_2)^2} + \frac{z^2}{(1+\varepsilon_3)^2} = 1
\]

The three principal axes of this *finite strain ellipsoid* are the maximum, intermediate and minimum principal strain axes designated by \(X, Y \) and \(Z \), respectively, when lengths can be measured to define the strain magnitude. From equations (3) and (4), these lengths are:

\[
X = 1 + \varepsilon_1 = \lambda_1 \geq \quad Y = 1 + \varepsilon_2 = \lambda_2 \geq \quad Z = 1 + \varepsilon_3 = \lambda_3
\]

respectively, since the original sphere has a radius of 1. The longest axis \(X \) is the stretching axis, \(Y \) the intermediate axis and \(Z \) the shortening axis. Deformation in which all 3 principal strains are non-zero \((X \geq Y \geq Z)\) is *triaxial*.

The strain ellipsoid is the visualization of a second order strain tensor.
The lines of no finite longitudinal strain in the strain ellipse correspond to two planes of no finite longitudinal strain (no stretching, no rotation) in the strain ellipsoid. Cross-sections of the strain ellipsoid are ellipses (but there can be circular cross-sections). In general, the way we determine the 3D strain ellipsoid is to saw up rocks to define surfaces on which we find 2D strain ellipses. Then recombine the ellipses into an ellipsoid.

Shapes

A single number, the strain ratio, specifies the shape (distortion component) of the strain ellipse in 2 dimensions.

In 3 dimensions, the shape of any ellipsoid is fully characterized by two ratios: The ratio $R_{1,2}$ of the longest and intermediate axes and the ratio $R_{2,3}$ between the intermediate and shortest axes:

$$R_{1,2} = \frac{X}{Y} \quad \text{and} \quad R_{2,3} = \frac{Y}{Z}.$$

The different shapes of finite strain ellipsoids can then be distinguished using the value:

$$K = \frac{(R_{1,2} - 1)}{(R_{2,3} - 1)}$$

Notice that 1.0 is the minimum value of $R_{1,2}$ and $R_{2,3}$.

Every ellipsoid can be reported as a point in the so-called Flinn diagram, where $R_{1,2}$ is plotted vertically against $R_{2,3}$ and K values describe slopes of lines passing through the origin.

The diagonal ($R_{1,2} = R_{2,3}$) defines **plane strain** deformation where the Y axis of finite strain ellipsoids keeps constant during deformation (i.e., there is neither extension nor shortening along the Y direction and all displacements due to deformation occur in the XZ plane).

The plain strain diagonal line divides the graph into two fields. At constant volume, the various strain states are described as follows:

$K = \infty$: **Axially symmetric stretching**: $X \gg Y \geq Z$; Ellipsoids have a long, cigar shape and plot near the vertical axis.
\(\infty > K > 1 \): **Constrictional strain**; in this case \(X > Y = Z \); the ellipsoids have a prolate to cigar shape and plot near the vertical axis, above the plane strain line.

\(K = 1 \): **Plane strain** at constant volume.

\(1 > K > 0 \): **Flattening strain**; in this case \(X = Y > Z \); the ellipsoids have an oblate to pancake shape and plot below the diagonal line, near the horizontal axis.

\(K = 0 \): **Axially symmetric flattening**. \(X \geq Y >>> Z \); The flat ellipsoids plot along the horizontal axis.

Volume change

Taking \(V = X.Y.Z \) and \(V_0 = 1 \), dilatation (equation 7) is expressed by:

\[
\Delta + 1 = X.Y.Z = (1 + \varepsilon_1)(1 + \varepsilon_2)(1 + \varepsilon_3)
\]

Plane strain conditions separating the constriction and flattening fields in the logarithmic Flinn diagram are defined as \(\varepsilon_2 = 0 \). Rearranging in logarithmic terms yields the equation of a line with unit slope. Volume changes produce a parallel shift of the plane strain diagonal line. If \(\Delta > 0 \) the line intersects the vertical axis, if \(\Delta < 0 \) it cuts the horizontal axis.

Strain intensity

Several techniques provide a dimensionless measure of strain magnitude with reference to the shape of the strain ellipsoid, independently of its orientation.

The degree of strain visually increases away from the origin. It is defined in a logarithmic Flinn diagram as:

\[
D = \sqrt{\log^2(R_{1,2}) + \log^2(R_{2,3})}
\]

Finite strain, jpb, 2017
where $\log(R_{1,2})$ and $\log(R_{2,3})$ are the same ratios as defined for the Flinn diagram.

The so-called Hsu diagram uses the natural strain. All strain states are represented on a 60° sector of a circle. The Lode’s ratio $-1 < \nu < +1$ defines the shape of the ellipsoids obtained:

$$\nu = \frac{(\log R_{2,3} - \log R_{1,2})}{(\log R_{2,3} + \log R_{1,2})}$$

ν is measured along the circle arc. All plane strain ellipsoids (K line of Flinn diagram) plot along the bisecting arc $\nu = 0$, uniaxial constriction along the radius $\nu = -1$ and all uniaxial flattening along the radius $\nu = 1$. The amount of strain is the distance from the circle center expressed by:

$$\varepsilon = \left(\frac{1}{\sqrt{3}}\right)\sqrt{\left(\log R_{1,2}\right)^2 + \left(\log R_{2,3}\right)^2 + \left(\log R_{1,3}\right)^2}$$

where $R_{1,3}$ is Z/X.

Another measure also uses the ratios of principal strain axes to give an intensity $r = (X/Y) + (Y/Z) - 1$.

Note: Strain ellipses and ellipsoids are shapes that offer no information about the deformation history; for example, identical shapes may result from simple or pure shear and the sum of two ellipses is another ellipse (ellipsoids in 3D). Conversely, superposed structures in anisotropic (layered or foliated) rocks that deformed heterogeneously may yield some relative chronology between deformation features.

Mohr diagram for strain

As previously, start considering a two-dimensional pure shear parallel to the coordinate axes x horizontal (elongation) and y vertical (shortening), crossing at a fixed origin O. Also consider...
homogeneous and infinitesimal strain, so that linear and shear strains are so small that their products are negligible and all displacements are linear.

A point P_0 has coordinates (x_0, y_0). For convenience, consider the line OP_0, inclined at an angle θ to the horizontal x axis, to have unit length. Then $x_0 = \cos \theta$ and $y_0 = \sin \theta$.

Infinitesimal longitudinal strain

After deformation, P_0 has moved to P_1 at coordinates (x_1, y_1). The displacement from P_0 to P_1 has two components, each parallel to the coordinate axes. They correspond to the linear extension (equation 1) of the horizontal and vertical lines defining x_0 and y_0, respectively. These two components are:

- Horizontal extension: $\varepsilon_x \cos \theta$
- Vertical extension: $\varepsilon_y \sin \theta$

Lines OP_0 and OP_1 are nearly superposed and parallel if displacement components are infinitesimally small. A simple geometric construction and application of the Pythagora’s theorem then shows that lengthening components of the line $OP_0 = OP_1$ are $e_{xx} = \varepsilon_x \cos^2 \theta$ and $e_{yy} = \varepsilon_y \sin^2 \theta$ (negative in the sketched case), respectively.

Then, the linear extension of the unit length line is:

$$\varepsilon = \varepsilon_x \cos^2 \theta + \varepsilon_y \sin^2 \theta$$

For infinitesimal strain, this can be converted in terms of quadratic elongation:

$$\lambda = \lambda_x \cos^2 \theta + \lambda_y \sin^2 \theta$$

(9)

Re-writing with the trigonometric substitution to double angles $\cos^2 \theta = (1 + \cos 2\theta)/2$ and $\sin^2 \theta = (1 - \cos 2\theta)/2$ yields a longitudinal elongation:

$$\varepsilon = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\theta$$

(10)
Infinitesimal shear strain

The small displacement of P_0 to P_1 involves also a change in slope of the line from $\tan \theta_0 = y_0/x_0$ to $\tan \theta_1 = y_1/x_1$. This line rotation implies shear strain as in equation (6).

Line OP_0 is the radius of the circle deformed into the strain ellipse passing through P_1. The line tangent to the circle in P_0 (hence initially orthogonal to OP_0) becomes inclined to OP_1. The change from right angle to the new angle is the angle of shear ψ. This can be visualized as the angle between the line orthogonal to OP_1 and the inclined tangent to the unit circle, which is also the angle between OP_1 and the normal to this inclined tangent. Call Q the point of intersection between the perpendicular from the origin to the distorted tangent and this line. Then the shear angle is given by:

$$\cos \psi = OQ/OP_1$$

which can be written with the secant function:

$$\sec \psi = OP_1/OQ$$

remembering the trigonometric function $\tan^2 \psi = \sec^2 \psi - 1$.

The standard equation of an ellipse whose major and minor axes coincide with the coordinate axes is:

$$(x/a)^2 + (y/b)^2 = 1$$

with a and b the semi-axes, in this case $1 + \varepsilon_x = \sqrt{\lambda_x}$ and $1 + \varepsilon_y = \sqrt{\lambda_y}$.

In coordinate geometry and assuming that for infinitesimal strain $x^2 = x_0x_1$ and $y^2 = y_0y_1$, the equation of the ellipse at (x_1, y_1) is $\left(\frac{x_1}{a^2}\right) + \left(\frac{y_1}{b^2}\right) = 1$

Since strain is very small, the equation of the ellipse simplifies to that of the tangent line at P_1. We express for P_1: $x_1 = \cos \theta (1 + \varepsilon_x) = \cos \theta \sqrt{\lambda_x}$ and $y_1 = \sin \theta (1 + \varepsilon_y) = \sin \theta \sqrt{\lambda_y}$

The tangent to the strain ellipse at P_1 becomes:

$$\left(x \cos \theta / \sqrt{\lambda_x}\right) + \left(y \sin \theta / \sqrt{\lambda_y}\right) = 1$$

For infinitesimal strains the variables can be taken as constants and we identify the standard equation of a line $mx + ny + r = 0$.

The perpendicular distance of a line to the origin is $d = r/\sqrt{m^2 + n^2}$

Where radius r is absolute value.

Thus we can write $OQ = \sqrt{\left[\left(\cos^2 \theta / \lambda_x\right) + \left(\sin^2 \theta / \lambda_y\right)\right]}$

Hence $\sec \psi = \sqrt{\lambda_x + \lambda_y}\left[\left(\cos^2 \theta / \lambda_x\right) + \left(\sin^2 \theta / \lambda_y\right)\right]$.

Subtracting 1, we obtain the shear strain: $\tan^2 \psi = \lambda_x\left[\left(\cos^2 \theta / \lambda_x\right) + \left(\sin^2 \theta / \lambda_y\right)\right] - 1$

which in equation (9) yields:

$$\gamma = \frac{\lambda_x - \lambda_y}{\sqrt{\lambda_x \lambda_y}} \cos \theta \sin \theta$$

Expressing

$$\sqrt{\lambda_x \lambda_y} = \sqrt{(1 + \varepsilon_x)^2 (1 + \varepsilon_y)^2}$$

Infinitesimal strains become so small when they are squared that they can be neglected. Then $\sqrt{\lambda_x \lambda_y} \approx \sqrt{1}$ and:

Finite strain
\[\gamma = (1 + \varepsilon_x)^2 (1 + \varepsilon_y)^2 \cos \theta \sin \theta \]

Using the double angle for single angles and developing the squared strain terms yields:

\[\frac{\gamma}{2} = \frac{(\varepsilon_x - \varepsilon_y)}{2} \sin 2\theta \quad (11) \]

Mohr circle for infinitesimal strain

Equation (10) and the halved equation (11) can be squared and added to write:

\[\left[\varepsilon - (1/2)(\varepsilon_x + \varepsilon_y) \right]^2 + \left(\frac{\gamma}{2} / 2 \right)^2 = \left[(1/2)(\varepsilon_x - \varepsilon_y) \right]^2 \left(\cos^2 2\theta + \sin^2 2\theta \right) \]

Since \(\cos^2 + \sin^2 = 1 \), for any angle:

\[\left[\varepsilon - (1/2)(\varepsilon_x + \varepsilon_y) \right]^2 + \left(\frac{\gamma}{2} / 2 \right)^2 = \left[(1/2)(\varepsilon_x - \varepsilon_y) \right]^2 \]

in which the form of the standard equation of a circle in the coordinate plane \((x, y)\) with centre at \((h, k)\) and radius \(r\):

\[(x - h)^2 + (y - k)^2 = r^2 \]

can be recognised, with \(x = \varepsilon\), \(y = \gamma/2\) and \(k = 0\).

This solution shows that a Mohr construction can be used for infinitesimal strain with normal extension as abscissa. In the circle of strain, the ordinate represents only one half of the shear strain.

![Two-dimensional Mohr construction for infinitesimal strain](image-url)

Like for stresses, an angle subtended at the centre of the Mohr strain circle by an arc connecting two points on the circle is twice the physical angle in the material. This readily shows that the maximum shear strain occurs on planes at \(45^\circ\) to the maximum elongation.

Mohr circle for finite strain

Approximations made for infinitesimal strain \((P_0 = P_1 \text{ and } \theta_0 = \theta_1)\) cannot be accepted for larger, geological and measurable strain.

Longitudinal strains are considered using the reciprocal quadratic elongation \(\lambda' = 1/\lambda = (1 + \varepsilon)^2\) (see equation 4). The derivation for changes in length is similar to that for infinitesimal longitudinal strain, yielding a result comparable to equation (9) rewritten with \(\lambda'\) and \(\theta'\), the orientation of a marker line after deformation:

\[\lambda' = \lambda_x' \cos^2 \theta' + \lambda_y' \sin^2 \theta' \quad (12) \]
Using the double angle identities \(\cos^2 \theta' = \frac{1 + \cos 2\theta'}{2} \) and \(\sin^2 \theta' = \frac{1 - \cos 2\theta'}{2} \) results in a formulation resembling equation (10) for infinitesimal longitudinal strain:

\[
\lambda' = \frac{\lambda'_x + \lambda'_y}{2} + \frac{\lambda'_x - \lambda'_y}{2} \cos 2\theta'
\]

(13)

Assessing shear strain starts, like for infinitesimal strain, with the equation of the ellipse but now expressed in terms of reciprocal quadratic elongation:

\[
\lambda'_x x'^2 + \lambda'_y y'^2 = 1
\]

with \(x' \) and \(y' \) the coordinates of a point (i.e. the directions of a radius vector) after deformation. The equation of a line tangent to the ellipse at that point derives from the equation of the ellipse:

\[
\sqrt{\lambda'} = (\lambda'_x \cos \theta') x' + (\lambda'_y \sin \theta') y'
\]

Normalising, expanding, squaring, substituting and developing as detailed in specialised literature yields, somewhat expectedly, an equation similar to equation (11):

\[
\gamma' = \frac{\lambda'_y - \lambda'_x}{2} \sin 2\theta'
\]

(14)

where \(\gamma' = \gamma / \lambda' \). The two measures on the left sides of equations (13) and (14) plotted against each other define a Mohr circle centred on the abscissa between \(\lambda'_x \) and \(\lambda'_y \). Note that per definition \(\lambda'_x \) represents the greater principal strain but plots on smaller values than \(\lambda'_y \), the smaller principal strain. The strain Mohr circle is entirely on the right side of the origin since the reciprocal quadratic elongation \(\lambda'_x = 1/\lambda = (1 + \epsilon)^2 \) is always positive. \(\gamma' \) is a measure of \(\gamma \), the shear strain of a material line at \(\theta' \) to the identifiable \(\lambda_x \) direction, in the deformed state. The lines of no finite elongation plot have \(\lambda' = 1 \). They are the intersections of the vertical line through this abscissa point and the circle. There are important differences with the stress Mohr circle.

The strain Mohr circle represents a two-dimensional state of homogeneous finite strain. Any point on the circle represents a line, not a plane as for the stress Mohr circle. Using reciprocal elongations, the strain angles are positive clockwise. However, the shear angle measured between the abscissa and the line connecting the origin to any strain point (since \(\gamma' = \gamma / \lambda' \)) remains positive anticlockwise.
Mohr circles for infinitesimal and finite strain in three dimensions
Like with stresses, the reciprocal intermediate principal strain axis can be plotted on the abscissa. Two circles within the defined two-dimensional circle represent the whole state of three-dimensional finite strain.

Strain regime
As a first approximation, the general strain is assumed to be homogeneous and can be discussed in two dimensions (plane strain), where no area dilatation has taken place. The notions in two dimensions (2D) will be then extended to three dimensions (3D). General deformation has two end-members:
- Pure shear.
- Simple shear;
They refer to two types of deformation paths, respectively: coaxial and non-coaxial. These two terms refer to characteristic conditions under which deformation, as a process, occurs and evolves. Per definition, simple shear and pure shear are therefore strain regimes.

Coaxial deformation; Pure shear

Coaxial deformation path
A coaxial deformation path is one in which the principal strain axes remain parallel to the same material lines throughout straining (i.e. the axes of the finite and infinitesimal strain ellipses remain parallel throughout the deformation). The coaxial deformation is irrotational.
In 2D, coaxial deformation transforms a square into a rectangle by homogeneous flattening. Two opposite sides of the square are shortened in one direction; the other two sides are elongated in the orthogonal direction. After coaxial deformation the sides of the square remain parallel and perpendicular.

In 3D, a cube of rock is shortened in one direction and extended in the perpendicular direction. The cube is converted to a right parallelepiped while the sides of the cube remain parallel throughout the deformation, i.e. the sides of the final parallelepiped are parallel to the sides of the original cube. The orientation of the principal axes X, Y and Z does not change during progressive, homogeneous deformation.

Pure shear
If the Y axis of the strain ellipsoid remains constant in length (plane strain), coaxial strain may be fully described in the plane containing the X and Z axes, i.e. the 2D square transformed into a rectangle. If, additionally, the area of the rectangle is the same as that of the initial square, the 2D constant area is constant volume in 3D. Such a constant volume, coaxial and plane strain is known as pure shear. Note that all planes and lines (except the principal strain planes and axes) rotate towards the plane of maximum flattening and the line of maximum extension. In that case:
Finite strain

\[
(1 + \varepsilon_1) = 1/(1 + \varepsilon_3)
\]

Coaxial total strain ellipse

However, coaxial strain may also include uniform dilatation.

Non-coaxial deformation; simple shear

Non-coaxial deformation path

A **non-coaxial** deformation path is one in which the material lines parallel to the infinitesimal principal strain axes change as deformation progresses. The axes of the finite and infinitesimal strain ellipses are not parallel. Detailed observation reveals that the principal axes of the strain ellipse rotate through different material lines at each infinitesimal strain increment: non-coaxial deformation is **rotational**.

In 2D, non-coaxial deformation transforms a square into a parallelogram in response to a shear couple. Two opposite sides of the square (traditionally the two vertical sides) are progressively inclined in one direction; the other two, traditionally horizontal sides are parallel to the shear couple and remain parallel.

In 3D, a cube of rock is converted to a parallelepiped while the upper and lower sides of the cube remain parallel throughout the deformation. The principal axes X and Z rotate during progressive, homogeneous deformation. The intermediate strain axis Y remains parallel to itself. It is a stable direction throughout simple shear deformation.

Simple shear

Simple shear is plane strain non-coaxial deformation. Volume remains constant and the Y axis of the strain ellipsoid remains constant in length. Simple shear is analogous to the process occurring when a deck of cards is sheared to the right or left with each successively intervening and equally thin card sliding over its lower neighbor. Since the cards do not widen (their short side is parallel to the Y axis of the strain ellipsoid), one can observe from the side what simple shear is in the plane containing the X and Z axes, with particular interest in the deformation of material lines. A square (or the rectangle defined by the limits of the card deck) subjected to simple shear is converted into a parallelogram. The vertical sides of the square rotate but remain parallel to each other during deformation. These two sides progressively lengthen as deformation proceeds, but the top and bottom lines neither stretch nor shorten. Instead they maintain their original length and also remain parallel to each other. These stable lines, which are the card plane in three dimensions, are directions of no-stretch (lines of no finite longitudinal strain). They represent the **shear direction**, while any card materializes the **shear plane**. All lines that are not parallel to the shear direction, on the shear plane, rotate in the same sense as the shear towards the shear plane and the line of shear direction.

Recall: - In three dimensions, the intermediate strain axis Y is a direction of no change in length that remains parallel to itself (the frontal side of cards). It is a stable direction throughout simple shear deformation.
- One line of no finite longitudinal strain is already defined: it is fixed and parallel to the shear plane; consequently, the fields of linear extension and shortening are asymmetrical.

Non-coaxial total strain ellipse

Any arbitrary strain can be described in terms of a distortional component, which measures the ellipsoid shape plus a rotational component, which is the internal rotation of the principal strain axes from their original attitudes in the unstrained state.

Coaxial / non-coaxial strain: ambiguity

A rotational strain is equivalent to a coaxial strain combined with external, rigid body rotation. Therefore, the shape of a finite strain ellipsoid cannot indicate how the strain was actually produced. Since all planes and lines (except the principal ones) rotate towards planes of maximum flattening and lines of maximum extension with both coaxial and non-coaxial deformation, everything moves to the same plane and line in high strain deformation.

Coaxial / non-coaxial strain: distinction

Particle motion: symmetrical for coaxial deformation, asymmetrical for non-coaxial deformation. Instantaneous stretching axes: parallel & perpendicular to shear zone for coaxial deformation, inclined to shear zone for non-coaxial deformation. Finite stretching axes: fixed for coaxial deformation, rotate for non-coaxial deformation.

Strain markers

Strain markers are any objects whose original shapes either are well known from undeformed rocks or can be estimated. Assuming that they deform passively within and with their matrix, their changed shapes reflect the intensity and the regime of strain in the rock. Several techniques have been devised for the measurement of strain from a variety of objects in rocks. The magnitude of strain is measured by comparing the final shape and configuration with the initial ones. Common shapes used in strain analysis include the sphere, circle, ellipse, bilaterally symmetric forms, and forms without bilateral symmetry. Accordingly, strain markers are grouped as follows:

- Initially spherical objects (e.g. ooids, cylindrical worm burrows, reduction spots)
- Initially ellipsoidal objects (e.g. pebbles, xenoliths)
- Initially linear object (e.g. belemnites)
- Objects with known angular features (e.g. fossils)
Evenly distributed objects (e.g. centres of minerals, pebbles). Strain measurements are useful to reconstruct the regional strain field.

Limitations and warning

Matrix-object relationship
Not all deformed objects can be used as an absolute measure of strain because in some rocks the matrix deforms more easily than the strain markers. In this respect, most reliable strain markers are worm tubes or reduction spots that have the same competence as the rock matrix, so that they change shape as much as the bulk rock.

Orientation of plane of study
Strain measurements are often dealing with
- changes in the ratio of one length relative to a length in another direction and
- the change in angle between two lines that were initially at a known angle.
Results are affected by the orientation of planes of study. In addition, the original size of any individual marker may be unknown.

Volume changes
True strain is most easily measured if the deformation is volume constant. In this case shortenings and extensions are balanced. The volumetric component of strain cannot be detected by relating an original shape to a final shape. A further complication arises if the volume reduction during deformation affects only the matrix without affecting the strain marker.
The volume change \(1 + \Delta V\) is obtained from \((1 + \varepsilon_1)(1 + \varepsilon_2)(1 + \varepsilon_3)\).

Initially spherical objects: Direct measurement of elliptical objects
The simplest technique for measuring volume-constant strain uses initially spherical markers that give circular shapes in any cross-section. These spheres are deformed into ellipsoids, giving elliptical cross-sections whose axes are axes of the strain ellipsoid. By combining data on axial ratios from differently oriented cross-sections, the three-dimensional volume-constant strain of the rock may be determined. In practice, the initial shape of spherical strain markers such as oolites is not perfectly spherical, and the deformation varies from point to point. Thus, a deformed oolitic limestone contains a variety of sizes and shapes of deformation ellipsoids, and many of them have to be measured to derive an average bulk strain for the rock.

Initially cylindrical objects: Direct measurement of longitudinal strain
Linear objects for which one can reconstruct the pre-deformation length are sometimes available. For example, rigid objects such as belemnite fossils and tourmaline crystals may undergo boudinage during elongation. The original length of the object can be determined by simply adding up the lengths of all fragments. The final length can be measured directly, and the stretch can be calculated \((l/l_0)\).
The assumptions for this method are:
- There is no distortion of the boudins
- The separation of the boudins represents the whole of the longitudinal strain.
If these assumptions are satisfied, this method can in theory yield both the dilational and distortional components of the strain ellipse.
Once several objects have been measured, their orientations and lengths can be plotted in radial coordinates. A best-fit ellipse may be estimated using a set of elliptical templates. In theory a minimum of three points may constrain the ellipse but usually more are advisable.
Objects with known angular features: Mohr circle and Wellman methods

Deformed fossils
Fossils often possess bilateral symmetry, known angular relationships and proportion characteristics that typify a given species. Knowing their original shape, they may be used as strain markers provided several are available in the outcrop.

Fry's method: Center-to-center distance
Strain markers in rocks may be too strong to deform homogeneously with their matrix. Examples include pebbles in a soft matrix, sand grains, ooids, feldspar porphyroclasts, etc. The shapes of these objects cannot be used to determine strain. Instead, it is possible to use their centre-point spacing if the objects were uniformly spaced in all directions before deformation (e.g. closely packed circular grains or ooids) and had no shape preferred orientation. Imagine undeformed grains or ooids are well approximated by a circle. Then the pre-deformation and smallest center to center distance was the sum of the two radii of the two neighbouring circles. These radii were equal if grain size was homogeneous and grain distribution isotropic. Then the minimum distances between centers were equal in all directions, defining a circle around any grain center. This circle of minimal distances is shortened or stretched by homogeneous deformation of the matrix along the axes of the strain ellipse. Then the distances between centers of objects are related to the orientation and shape of the strain ellipsoid. An important assumption is that the strain markers did not slid past each other during deformation.

Procedure
- Draw two orthogonal lines intersecting in the middle of a sheet of tracing paper. Place the origin over the center of one object.
- Mark the centres of all nearby objects.
- Move the tracing paper (without rotating it) to the next object. Repeat marking centres of all nearby objects.
- Repeat the procedure for all objects.
- After a sufficient number of objects has been used (typically >50), an elliptical vacancy appears around the reference intersection point. The shape of this vacancy is the shape of the strain ellipse.

\(RF/\phi \) method: Deformed pebbles
The \(RF/\phi \) method is a practical tool for strain determination from originally ellipsoidal objects such as pebbles.
\(RF \) is the ratio of long axis to short axis of a deformed elliptical object. This ratio can be thought of as a combination of the initial ratio (ellipticity \(Ri \) of the measured elliptical object and the axial ratio of the strain ellipse \(Rs \).
\(\phi \) is the \(\pm 90^\circ \) angle between the long axis of the elliptical object and an arbitrary reference line.

Finite strain and displacement: Mathematical description
Since deformation defines the change in position of points, one way to characterise any deformation is to assign a displacement vector to every point of a body placed in a Cartesian coordinate frame. The displacement vector joins the position of the considered point in its reference (generally initial) location to its position in the deformed situation. This is a forward problem, in which the variables are material coordinates. One can also take spatial coordinates to try reconstructing the initial shape; this is an inverse problem.
Displacement in 2-dimension

Coordinates

The material point P_0 with initial, material coordinates (x_0, y_0) has moved, after deformation, to P_1 at spatial coordinates (x_1, y_1). For homogeneous deformation of an incompressible body, the two dimensional displacement of P_0 to P_1 is mathematically a coordinate transformation. To get it, one writes the table:

<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>y_1</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

and obtain equations:

\[
\begin{align*}
 x_1 &= ax_0 + by_0 \\
 y_1 &= cx_0 + dy_0
\end{align*}
\]

Deformation matrix

The mathematical basis for the 2D graphical representation of finite strain as strain ellipse and Mohr strain circle is a 2 x 2 matrix of numbers known as the deformation gradient tensor, simply the deformation matrix.

A vector is a one-column matrix. If a vector represents the coordinates of a point in space, then matrix multiplication may be used to transform that point to a new location:

\[
\begin{bmatrix}
 x_1 \\
 y_1
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 x_0 \\
 y_0
\end{bmatrix}
\]

where the deformation matrix for infinitesimal or homogeneous deformation is:

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} =
\begin{bmatrix}
 \varepsilon_{xx} & \varepsilon_{xy} \\
 \varepsilon_{yx} & \varepsilon_{yy}
\end{bmatrix}
\]

This is written in a simplified form with the deformation matrix D in bold:

\[
Dx_0 = x
\]

Matrix multiplication

Matrix multiplication is as follows:

\[
\begin{bmatrix}
 a_{xx} & a_{xy} \\
 a_{yx} & a_{yy}
\end{bmatrix}
\begin{bmatrix}
 b_{xx} & b_{xy} \\
 b_{yx} & b_{yy}
\end{bmatrix} =
\begin{bmatrix}
 a_{xx}b_{xx} + a_{xy}b_{yx} & a_{xx}b_{xy} + a_{xy}b_{yy} \\
 a_{yx}b_{xx} + a_{yy}b_{yx} & a_{yx}b_{xy} + a_{yy}b_{yy}
\end{bmatrix}
\]

Like for stress notation, the first subscript means “act on a plane orthogonal to subscript axis”, the second subscript means “oriented parallel to subscript axis”.

In general, we can visualize the type of strain represented by a deformation matrix by imagining its effect on a unit square. The two columns of the deformation matrix represent the destinations of the points $(1,0)$ and $(0,1)$ at the corners of the initial, undeformed square, respectively.
Dilatation (equation 7) is given by

\[1 + \Delta = ad - bc \]

The rotational component of deformation is given by

\[\tan \omega = \frac{(b - c)}{(a + d)} \]

From a strain ellipse to the deformation matrix

The long and short axes of the strain ellipse are defined by the principal stretches \(S_1 \) and \(S_3 \), respectively (see equations 3 and 8). Define \(\theta \) the initial clockwise angle from the x axis to \(S_1 \) and \(\theta' \) this angle after deformation \((\theta' = \theta + \omega) \). Then:

\[
\begin{align*}
31a &= S_3 \sin \theta \sin \theta' + S_1 \cos \theta' \cos \theta \\
31b &= S_3 \sin \theta' \cos \theta - S_1 \cos \theta' \sin \theta \\
31c &= S_3 \cos \theta' \sin \theta - S_1 \sin \theta' \cos \theta \\
31d &= S_3 \cos \theta' \cos \theta + S_1 \sin \theta' \sin \theta
\end{align*}
\]

From the deformation matrix to a strain ellipse

The orientations of the strain axes are given by:

\[-\tan 2\theta' = 2 \left(\frac{ac + bd}{a^2 + b^2 - c^2 - d^2} \right) \]

The principal strains are given by the two solutions to the following

\[\lambda = 0.5 \left\{ \frac{a^2 + b^2 + c^2 + d^2 + \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad-bc)^2}}{a^2 + b^2 - c^2 - d^2} \right\} \]

Some special cases

\[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] The matrix that does nothing

\[\begin{bmatrix} 1 + \Delta & 0 \\ 0 & 1 + \Delta \end{bmatrix} \] A matrix that describes a simple dilation

A rotation clockwise about the origin

\[\begin{bmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{bmatrix} \]

A pure strain with strain axes parallel to x and y

\[\begin{bmatrix} 1 + \varepsilon_1 & 0 \\ 0 & - (1 + \varepsilon_1) \end{bmatrix} \]

A general pure strain

\[\begin{bmatrix} a & b \\ b & d \end{bmatrix} \]

A simple shear parallel to x

\[\begin{bmatrix} 1 & \gamma \\ 0 & 1 \end{bmatrix} \]
Displacement components

A displacement vector \(\mathbf{d} \) links \(P_0 \) to \(P_1 \). This vector is possibly not the exact path along which \(P_0 \) has moved to \(P_1 \); it only identifies the initial and final positions of the considered point, but may itself be the sum of several smaller vectors.

The displacement gradient tensor \(\mathbf{J} \) is very simply related to the deformation matrix:

\[
\mathbf{J} = (\mathbf{D} - \delta) = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]

When a point \(x \) is multiplied by \(\mathbf{J} \), the result is a vector describing the displacement of \(x \) (i.e., its change in location).

\[
\mathbf{J} x_0 = x - x_0
\]

The strain tensor representing the non-rotational part of the deformation is a variant of the displacement gradient tensor. Recall that a pure strain (no rotation of the strain axes) is represented by a symmetric matrix. We can design a symmetric matrix that comes close to representing the strain component of displacement, by averaging the two asymmetric terms \(b \) and \(c \). This gives a matrix called the strain tensor \(\mathbf{E} \):

\[
\mathbf{E} = \begin{bmatrix}
e_{xx} & e_{xy} \\
e_{yx} & e_{yy}
\end{bmatrix} = \begin{bmatrix}
a - 1 & 1/2(b + c) \\
1/2(b + c) & d - 1
\end{bmatrix}
\]

Every particle of a deformed body is associated with a displacement vector; collectively, all vectors define a displacement field.

General homogeneous deformation is a combination of three types of displacement: (1) Translation, (2) rotation and (3) stretch.

Translation

A field of parallel vectors with the same direction displaces all points of the body by the same distance:

\[
x = x_0 + A \\
y = y_0 + B
\]

\[
X_i = a_i x_i + u_i
given in matrix form as \(\mathbf{X} = \mathbf{A} \mathbf{x} + \mathbf{U} \). The constant values \(u_i \), which are independent of position, represent the rigid body translation, and are not considered further.

Since the displacement is uniform, the body suffers no internal deformation.

Rotation

All lines in a body uniformly change their orientation. Therefore, rotation does not affect the shape of the body. There are two cases:

Clockwise rotation

\[
x = x_0 \cos \omega + y_0 \sin \omega \\
y = -x_0 \sin \omega + y_0 \cos \omega
\]

Anticlockwise rotation

\[
x = x_0 \cos \omega - y_0 \sin \omega \\
y = -x_0 \sin \omega + y_0 \cos \omega
\]

Vorticity

Vorticity is a mathematical formulation related to the rate of rotation of fluid particles entrained in a swirl. The axis around which the particles rotate carries the vorticity vector whose magnitude equals the angular rate of rotation.
In pure shear, for every line rotating clockwise there is a line rotating by precisely the same amount anticlockwise; the average rotation is zero. If deformation is non-coaxial, all material lines rotate around the intermediate strain axis. The average angular velocity of the rotating material lines is the internal vorticity, which is a vector parallel to the Y axis. Internal vorticity is quantified with the kinematic vorticity number W. In non-compressible material, it is the ratio of angular rotation (in radians) to the extension along the X axis. In two dimensions, the vorticity is also the cosine of the angle between the flow asymptotes. This measure of the amount of rotation compared to the amount of distortion yields a degree of non-coaxiality:

$W = 0$ for pure shear, which is coaxial deformation.

$W = 1$ for simple shear, which is rotational deformation.

Vorticity varies between 0 and 1 for general deformation.

Attention

If the body is rotating during deformation, vorticity has two components: shear-induced vorticity and spin, which is the rotation of the strain axes.

Flow lines

Describing flow lines is another useful method to display strain history.

In the coaxial case, flow along the strain axes is directly straight inward or outward. The strain axes act as flow asymptotes. They also coincide with the eigenvectors of the deformation matrix.

In non-coaxial flow, flow asymptotes do not usually coincide with the strain axes, even if they coincide with the eigenvectors of the deformation matrix. As deformation becomes more noncoaxial the flow asymptotes get closer together, until in the case of simple shear, there is only one asymptote.

Displacement in three-dimensions

The point P_0 has initial, material coordinates (x_0, y_0, z_0). After deformation, P_0 has moved to P_1 at spatial coordinates (x_1, y_1, z_1).

Like in two-dimensions, homogeneous deformation in two dimensions the displacement of P_0 to P_1 is mathematically a coordinate transformation:

$$
x_1 = ax_0 + by_0 + cz_0
\quad y_1 = dx_0 + ey_0 + fz_0
\quad z_1 = gx_0 + hy_0 + iz_0
$$

Which written in matrix form is:

$$
\begin{bmatrix}
x_1 \\
y_1 \\
z_1
\end{bmatrix} =
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\begin{bmatrix}
x_0 \\
y_0 \\
z_0
\end{bmatrix}
$$

where the deformation matrix D for infinitesimal or homogeneous deformation is:

$$
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
= \begin{bmatrix}
\varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
\varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz}
\end{bmatrix}
$$

This second order tensor is symmetrical, which implies that there are three orientations, the three diagonal components, for which there is no shear strain. A vectorial quantity with the three Cartesian components \vec{u}, \vec{v} and \vec{w} parallel to the x, y and z coordinates, respectively, defines the displacement of the material point P. For infinitesimal strain problems, the displacement variation can be assumed to be linear and uninterrupted within the continuum body. Then, the vectorial components are differentiable with respect to the coordinates axes.
At a scale at which deformation can be approximated to be continuous and homogeneous the deformation is characterized by the finite strain ellipsoid representing a deformed unit sphere. Mathematically this deformation can be described by the deformation tensor D. Contrary to the stress tensor, where only six independent components are necessary to define the state of stress at a point, D needs nine components representing axial length and orientations of the three principal axes of the finite strain ellipsoid and the rotation in space made by these axes.

Finite strain in 3D

We use and derive in three dimensions measures of strain analogous to those in two dimensions.

Strain ellipsoid

The size and orientation of the strain ellipsoid are given by the relative size and directions of the three mutually perpendicular principal strain axes $X = (1 + \varepsilon_1) \geq Y = (1 + \varepsilon_2) \geq Z = (1 + \varepsilon_3)$. These three axes are poles to the three principal planes of strain, which are the only three planes that suffer zero shear strain. The equation describing this ellipsoid is:

$$\frac{x^2}{(1 + \varepsilon_1)^2} + \frac{y^2}{(1 + \varepsilon_2)^2} + \frac{z^2}{(1 + \varepsilon_3)^2} = 1$$

Cross-sections of the strain ellipsoid are ellipses (but there can be circular cross-sections). In general, the way we determine the 3D strain ellipsoid is to saw up rocks to define surfaces on which we find 2D strain ellipses. Then recombine the ellipses into an ellipsoid.

Strain tensor

To specify the strain ellipsoid completely requires nine numbers organized in a 3 x 3 matrix.

- The three values of $X = (1 + \varepsilon_1) \geq Y = (1 + \varepsilon_2) \geq Z = (1 + \varepsilon_3)$
- The plunge and trend of one strain axis after deformation
- The rake of a second axis in the plane perpendicular to the first. (The third axis is mutually perpendicular to the other two).
- The plunge trend and rake for the three axes before deformation

The three dimensional deformation gradient tensor is this 3 x 3 matrix. For a non-rotational strain, the matrix is symmetrical, so only 6 numbers are independent and required because orientations are the same before and after deformation.

Rotation and strain in 3D

Rotational strain in 3D is complex. The rotational component of deformation can be perpendicular to two of the strain axes and therefore parallel to the third. When this is the case, the strain is described as **monoclinic**.

However, the rotation axis can be different from any of the strain axes. In that case, there is no mirror plane and the strain is **triclinic**. Triclinic strain and especially progressive triclinic strain (where rotation and distortion occur concurrently but on different axes) is very tricky to work with and requires techniques beyond the scope of this course.

Displacement vector field

Since every point in a deforming body follows a displacement vector, there is a displacement vector field covering the entire body. We have complete knowledge of the deformation if we know this displacement vector field.

Velocity field

Describes the velocity and direction of motion of the particles for the increment considered.
Flow lines

Experimental rheology and strain
Constitutive equations describing the ductile flow of rocks relate stress to the strain rate and not to the finite strain. This has important implications. Deformed rocks display a finite state of strain, which is the sum of all deformations these rocks have experienced. Since the strain rate essentially is the incremental strain per unit time and since finite strain ellipsoids do not provide any information about the deformation path, i.e. the incremental strain ellipsoids, ductile deformation structures cannot be directly interpreted in terms of stress orientation. In short, assuming that the maximum shortening direction of finite strain is parallel to the maximum compressive stress is a major blunder.

Conclusion
Strain is the change in the shape of a body as a result of deformation due to applied stresses. Strain involves volume changes (dilation or compaction), length changes (extension or shortening) and changes of angle (shear strain). Strain states can be characterised by 3 mutually perpendicular principal strain axes: typically X > Y > Z. The geologist analyses the long-term cumulative effect of deformation, which is the finite strain. The strain analysis is concerned with the estimation, at various points in a rock body, of the form and orientation of the finite strain ellipsoid. Similar geometrical forms can be obtained by different deformation mechanisms.

Recommended literature