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periods according to the proposal of a probabilistically recognized legislator — if a
majority prefer so — or according to previous period’s decision otherwise. Players’
payoff is the discounted sum of per period utilities. We show existence of a
Markov Perfect Nash Equilibrium; it is such that irrespective of initial conditions
outcomes are absorbed within an irreducible, finite set consisting of allocations
that give the entire dollar to the proposer. Contrary to results for amendment
agendas without future interaction after the final vote, the decision within each
period may be covered by the status quo. Outcomes may be ex ante Pareto
inefficient. For sufficiently large legislature a dictatorial agenda setter can impose
her ideal point in all periods but the initial two a la McKelvey, 1976, 1979, even
though legislators are farsighted. The equilibrium collapses for high degrees of
risk aversion, or when the legislature is small and recognition probabilities are
asymmetric. Contrary to the comparative static in the Baron-Ferejohn model
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1. INTRODUCTION

In modern democracies the legislative power that permits the enactment of particular

policies, most often also allows their revision at future points in time. Legislative interaction

is in that sense truly dynamic: not only must legislators consider the immediate conse-

quences of legislation they enact, but they must also anticipate that this decision will serve

as the alternative (status quo) which they have to compare with potential future decisions.

Given the results of Romer and Rosenthal, 1978, replicated in numerous models of legisla-

tures regarding the influence of the status quo on legislative outcomes and the power of the

proposer, there is ample theoretical support for the claim that considerations about future

consequences of current decisions should be significant in the calculus of legislators.

Yet, it is a study of the intra-temporal dynamics involved in reaching a single decision

that predominate in most theoretical studies of legislatures. With few exceptions (Epple

and Riordan, 1987, Baron, 1996, Dixit, Grossman, and Gul, 2000, and Kalandrakis, 20021)

legislative studies implicitly or explicitly assume that the legislature adjourns after a decision

is reached, or that the legislative jurisdiction is such that no future revision is possible or

probable after a finite number of periods.

This neglect for the inter-temporal dynamics of majority rule choice is also unfortunate

because it is in this context that the cycling results of social choice theory become relevant.

Since generically (Plott, 1967, Schofield, 1978, 1983, Rubinstein, 1979) no policy beats every

other by majority rule and all alternatives are entangled in a big cycle (McKelvey, 1976,

1979), it is not only possible that legislatures revise policies too often, but also that they do

1See also Banks and Duggan, 2001, for a dynamic model where the status quo may prevail for any number

of periods until a proposal is approved.
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so in a way that makes future policies completely indeterminate2. But even if chaos does

not prevail, McKelvey, 1976, 1979, shows that in such environments a dictatorial agenda-

setter can force any decision upon the legislature if legislators are myopic by appropriately

constructing a sequence of pair-wise comparisons.

These predictions are potentially reversed if legislators are strategic and face a sequence

of votes on alternatives (an agenda) endogenously or exogenously constructed. These intra-

temporal dynamics are studied for example by Shepsle and Weingast, 1984, Banks, 1985,

and McKelvey, 1986, in the context of amendment agendas. With an amendment agenda, no

future interaction after the final vote, and sophisticated voting (Farquharson, 1969), possible

final outcomes belong in the uncovered set (Fishburn, 1979, Miller, 1980). The endogenous

construction of amendment agendas is considered by Banks and Gamsi, 1986, Austen-Smith,

1987, Duggan, 2001, and Penn, 2001.

Results for amendment agendas do not generalize when considering other agenda insti-

tutions. For example, Bernheim, Rangel, and Rayo, 2002, show that with sufficient periods

or proposers, endogenously constructed agendas lead with high probability to an extreme

outcome. In their analysis, though, the agenda is such that intermediate voting rounds

displace the existing status quo while legislators only care about the final victor in the se-

quence of decisions. Since constitutionally status quo legislation is displaced only if a new

law is promulgated, the agenda they consider is applicable in the limited range of cases

2There is another interpretation of the chaos theorems that is antithetical to the one we discuss and

focuses on the intra-period or intra-temporal dynamics of reaching a decision: for any pending decision an

entrepreneurial minority can always find an alternative that is majority preferred and, as a result, legislatures

are unable to decide. We consider this interpretation rather irrelevant. Even if such intra-temporal dynamics

prevail legislatures do decide in these cases, i.e. they decide to preserve the status quo.
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when legislation promulgated after each voting stage provides for implementation of policies

at the future point in time when the final round of voting takes place. While outcomes in

their analysis fall in the Pareto set, Ordeshook and Scwartz, 1986 show with considerable

generality that there exist (exogenously constructed) agendas that implement any outcome

despite sophisticated voting.

Our goal in this paper is to study the dynamics of the strategic interaction of legislators

who can enact legislation and subsequently revise their decision in each of an infinity of

periods. In such a dynamic framework incentives for moderation arise both on the part of

the voters via sophisticated voting, as well as on the part of proposers. The intuition follows

directly from the results of Romer and Rosenthal, 1978, regarding the power of the proposer

as a function of the status quo. In a nutshell, by adopting an extreme (but desirable) policy

in the current period, a proposer faces the risk that future proposers will achieve passage of

undesirable policies because they will legislate with a more distant status quo. Thus, there

exists a trade-off between the immediate utility arising from the current period legislative

decision and the stream of payoffs following this decision.

This intuition does seem to be at work in related studies where policy decisions are

drawn from ideological spaces. Baron, 1996, studies a model with the same institutions as in

this study where decisions are drawn from a one-dimensional space of alternatives. He shows

that legislative outcomes converge to the median from arbitrary initial policy decision and

discusses the calculation of proposers that may strategically place the status quo in order

to avoid undesirable future policies. Baron and Herron, 1999, numerically analyze a finitely

repeated version of the same game with a two-dimensional policy space and three legislators

with Euclidean stage preferences. They find that equilibrium legislative decisions tend to be
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more centrally located with a higher discount factor and a longer time horizon.

We show that incentives for moderation are considerably weaker in a distributive policy

space. We study these incentives in a dynamic game where the legislative decision in each

period is the division of a new dollar. Players only care about the share of funds they

receive and their payoff is the discounted sum of per period utilities. In each period, one of

the players is recognized to make a proposal for the division of the dollar. If the proposal

obtains a majority, then the division is implemented, else the dollar is divided as it was in

the last period. We allow general, asymmetric probabilities of recognition and risk-aversion3.

Although no general existence results apply for this class of dynamic games, we show

that a ‘simple’ refined equilibrium exists for low enough degrees of risk-aversion. It is simple

in that legislators condition their behavior only on the status quo in each period of delib-

eration and not on the whole history of the game. Despite the existence of majority rule

cycling and the fact that different legislators may propose alternatives in any given period,

only a finite number of budgets are eventually voted and decisions are identical between any

two consecutive periods with positive probability. Thus we observe no chaos, nor perpetual

instability.

Yet, the equilibrium involves extreme allocations. Within at most three periods from

the beginning of the game and irrespective of the initial status quo the proposer receives

the whole dollar and that pattern persists ever after. Although within any given period the

agenda we consider is a (degenerate) amendment agenda, outcomes under this equilibrium

3The model falls in the tradition of sequential models of bargaining as in Rubinstein, 1982, and Baron

and Ferejohn, 1989. Kalandrakis, 2002, analyzes the same game as in this study among three legislators

with equal probabilities of recognition and under the assumption of risk neutrality of stage preferences.
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fall outside the uncovered set and may be covered by the status quo when the covering

relation is defined on the basis of stage preferences.

We also show that for any discount factor there exists a sufficiently large legislature in

which a dictatorial agenda-setter that is recognized with probability one extracts her ideal

budget in each period (as in McKelvey 1976) even though legislators (voters) are farsighted.

The differences between our findings and those in Baron, 1996, and Baron and Herron, 1999,

for ideological spaces may account for the common institutional choice that legislation on

distributive policy spaces is often deliberated under special institutional rules compared to

the rules applicable for ideological legislation.

The equilibrium collapses if either the degree of risk-aversion is high relative to the

size of the legislature or — for fixed levels of risk-aversion — if the legislature is small. Thus,

incentives for nasty distributive politics diminish when the stage utility of legislators displays

high levels of risk aversion or rises steeply, so that the additional gain from reducing the

current allocation of other players diminishes. Similarly, these incentives increase with larger

legislatures or when a larger number of recipient units are involved in the allocation of

transferable resources. These results suggest that it may be optimal to increase the level

of geographical aggregation at which budgets are divided. Similarly, federal or confederate

structures may experience increased incentives for conflict-ridden distributive politics with

excessive expansion.

The finding about the effect of risk aversion is the opposite from the model of Baron and

Ferejohn, where risk aversion allows the proposer to extract more of the surplus (Harrington,

1990). Also contrary to the comparative statics in the Baron Ferejohn model (Eraslan,

2002) legislators that have high probability of being the proposer are less expensive coalition
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partners, ceteris paribus. By accepting an onerous budget today, legislators are able to

extract more of the budget tomorrow. Thus legislators with a high probability of being the

proposer in the next period are willing to accept proposals that allocate them a small share

of the budget.

In what follows we present the model in detail and define the equilibrium solution

concept. We offer a description of the equilibrium along with a characterization of equilibrium

strategies for a subset of possible status quo in section 3. In section 4 we state and discuss

the main findings. We conclude in section 5.

2. LEGISLATIVE SETUP & EQUILIBRIUM NOTION

Consider a set N = {1, ..., n} of n = 2κ+ 1 committee members, κ ≥ 2, that convene

in each of periods t = 1, 2, ... to choose a legislative outcome xt ∈ ∆. The space of possible

decisions in each period, ∆, represents possible divisions of a fixed budget (a dollar), i.e.

∆ ≡ {x ∈ Rn : xi ≥ 0, i ∈ N,
Pn

i=1 xi = 1}. At the beginning of period t = 1, 2, ... legislator

i is recognized with probability πi ≥ 0, i ∈ N ,
Pn

i=1 πi = 1, to make a proposal z ∈ ∆.

Having observed the proposal legislators vote yes or no. If m = κ+1 or more vote yes then

the proposal is implemented in that period, i.e. xt = z. Otherwise, the dollar is split as

it was in the previous period, i.e. xt = xt−1. Thus, previous period’s decision xt−1 serves

as the status quo or reversion point in the current period t, with the initial reversion point,

x0 ∈ ∆, exogenously given.

Legislators derive vNM stage utility ui : ∆ −→ R, i ∈ N , from the implemented

proposal xt. We assume that ui (x) = u (xi), for all i ∈ N with u continuous, u0 > 0, u00 ≤ 0,

u (0) = 0, and u (1) = 1. In the special case u00 = 0, we obtain ui (x) = xi, i.e. legislators
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are risk-neutral as in Kalandrakis, 2002. We will generally admit risk-aversion that opens

the possibility of inefficient outcomes, and add more restrictive conditions as necessary. The

future is discounted by a common factor δ ∈ [0, 1), so that the utility of legislator i from a

sequence of legislative outcomes {xt}+∞t=1 is given by:

(1) Vi
³©
xt
ª+∞
t=1

´
=

+∞X
t=1

δt−1ui
¡
xt
¢
=

+∞X
t=1

δt−1u
¡
xti
¢
, i ∈ N

If zti ∈ ∆ denotes the (observed) proposal of player i when recognized in period t, and

vt ∈ {yes, no}n is the vector of voting decisions in the same period, a history htv ∈ Ht
v at the

voting stage of period t is a vector
¡
x0, z1j ,v

1, ..., zt−1h ,vt−1, ztg
¢
, where legislators j, h, and

g where recognized in periods 1, t − 1, and t respectively. Likewise, a history htp ∈ Ht
p at

the proposal stage of period t is a vector
¡
x0, z1j ,v

1, ..., zt−1h ,vt−1
¢
. Strategies in this game

are sequences of functions that map histories to the space of proposals and voting decisions.

Pure proposal strategies for player i are determined by a sequence of functions f tp,i : H
t
p → ∆,

and voting strategies by a sequence of functions f tv,i : H
t
v → {yes, no}, t = 1, 2, ....

In what follows, though, we restrict analysis to cases when players condition their

behavior only on a summary of the history of the game that accounts for payoff-relevant

effects of past behavior (Maskin and Tirole, 2001, Fudenberg and Tirole, ch. 13). Specifically,

let the state s ∈ S in period t be defined by previous period’s allocation, i.e. s = xt−1, S = ∆.

Denote the space of Borel probability measures over ∆ by ℘ (∆). A (mixed) proposal strategy

for legislator i conditional on the state s, µi [s] ∈ ℘ (∆), represents a probability measure

over legislative outcomes proposed by legislator i when recognized with status quo s. A

voting strategy conditional on the state s is a Borel measurable acceptance set Ai (s) ≡

{z ∈ ∆ | i votes yes if state is s} for legislator i over proposals z. Thus, a (mixed) Markov

strategy for legislator i is a function from the state space S to the space of proposal and
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voting strategies. We will denote such strategies by σi (s) = (µi [s] , Ai (s)). Restricting
4

analysis to Markov strategies amounts to the requirement that players behave identically in

different periods with the same state, even if that state arises from different histories. We

believe there are at least two sets of reasons that make it theoretically important to study

equilibrium behavior under these assumptions.

One set of arguments revolves around certain appealing features of the Markovian be-

havioral assumption. Markov strategies are more likely to be followed by players in complex

strategic environments like the one we analyze because of their simplicity. As Maskin and

Tirole, 2001, page 193, argue, Markov strategies “...prescribe the simplest form of behavior

that is consistent with rationality.” In the same spirit and a related model, Baron and Kalai,

1993, show that the Markovian (in their case stationary) equilibrium analyzed in the model

of Baron and Ferejohn, 1989, is the unique least complex (or simplest) subgame perfect equi-

librium where simplicity is defined as the number of different states required to specify the

strategy of an automaton5. Second, Markov strategies imply that players take to heart the

idea that bygones are bygones a motivating concept behind the notion of subgame perfection

(Maskin and Tirole, 2001). Thirdly, Markov equilibria imply that small causes have small

effects (Maskin and Tirole, 2001).

There are also considerable analytical gains in focusing on Markov equilibria. Non-

Markovian equilibria for games of the type we analyze proliferate to the extent that equilib-

rium outcome becomes completely indeterminate6. Second, by focusing on equilibria where

4If players play Markov strategies the restriction to Markovian best responses is consistent with equilib-

rium.
5Obviously this is not the only possible definition of simplicity, and others may be more appropriate for

the game we analyze. We leave such issues for future research.
6We do note that folk theorems for stochastic games assume a combination of finite action and state
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behavior is only conditioned on the status quo, we allow for crisper analysis of the effect of

this variable on policy outcomes. Third, our results are comparable to those in Baron, 1996,

and Baron and Herron, 1999, who analyze the same institutions in a different policy space

than ours and use the same solution concept.

To state the solution concept rigorously, we need additional notation. Define the winset

of x ∈ ∆ as:

(2) W (x) =

(
y ∈ ∆ |

nX
i=1

IAi(x) (y) ≥ m
)
.

The winset contains the alternatives in ∆ that are majority preferred to the status quo s

according to Markov voting strategies Ai (s). Then, given a n-tuple of Markov strategies

σ = {σi}ni=1, we can recursively define the continuation value, vi (s), of legislator i when the

state is s as:

(3) vi (s) =

Z
∆

[ui (x) + δvi (x)]Q [dx | s]

where for any measurable Y ⊆ ∆, Q [Y | s] represents transition probabilities defined as

(4) Q [Y | s] ≡
nX
i=1

πiµi [Y ∩W (s) | s] + IY (s)
nX
i=1

πiµi [∆ÂW (s) | s]

The first part of equation (4) accounts for transitions to proposals that obtain a majority,

while the second part represents transitions to the reversion point or status quo s when the

spaces, public randomization, and/or impose conditions on feasible transitions (e.g. Dutta, 1995). Levine,

2000, shows that the folk theorem fails in a robust way for a dynamic game that does not meet Dutta’s

transition conditions. Yet, these conditions are satisfied in our game; and in a related but not identical

bargaining game with three players, Epple and Riordan, 1987, show at least two radically different outcomes

can be sustained as subgame perfect equilibria. Thus, we conjecture that all individually rational long-run

payoffs can be supported as subgame perfect equilibria of the game we analyze.
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proposal does not receive a majority. On the basis of equation (3) define the expected utility

of legislator i as a function of the current decision xt:

(5) Ui
¡
xt
¢
= ui

¡
xt
¢
+ δvi

¡
xt
¢

where it is understood that W (x), Q [Y | s], vi (xt) — hence Ui (xt) — are defined for given

Markov strategies σ. Then:

Definition 1 A Markov Perfect Nash Equilibrium in Stage-Undominated Voting strategies

(MPNESUV) is a set of Markov strategies σ∗ = {σ∗i }ni=1 = {(µ∗i [s] , A∗i (s))}ni=1, such that

for all i ∈ N , and for all s ∈ S:

(6) y ∈ A∗i (s)⇐⇒ Ui (y) ≥ Ui (s)

(7) µ∗i [argmax {Ui (x) | x ∈W (s)} | s] = 1

The first equilibrium condition amounts to the requirement that players use stage-

undominated (Baron and Kalai, 1993) voting strategies, i.e. they only vote yes to proposals

they weakly prefer over the status quo s. Thus, we eliminate a — rather large — class of

equilibria that involve players approving proposals with more than a bare majority of yes

votes while a majority prefer the status quo. Such equilibria solely rely on the fact that

changes in individual votes do not alter the voting outcome, so that both voting yes or

no constitute a best response for all players. The second equilibrium condition requires

that committee members optimize when making proposals. Note that we also require that

proposers always propose alternatives that obtain a majority; since equilibrium condition (6)

ensures that s ∈W (s) 6= ∅, this requirement and equilibrium condition (7) are consistent.
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3. EQUILIBRIUM ANALYSIS

We have specified a dynamic game with continuous action and state spaces, and no

existence theorem for Markov equilibria is applicable in this case7. We will establish ex-

istence of equilibrium by construction. Our approach consists of the following steps: first,

we conjecture and characterize equilibrium strategies for a subset of the space of possible

decisions. We conjecture that this subset constitutes an absorbing set and derive several

results for the expected utility function of legislators for outcomes within that set. We then

establish the validity of the conjecture by showing that there exist optimal strategies for all

status quo outside this absorbing set that move the game within this set in a single period.

Proposal and voting strategies for status quo both within and outside the absorbing set

satisfy equilibrium conditions (6) and (7), hence we obtain a MPNESUV.

Additional notation will be necessary in order to elaborate on the nature of the equi-

librium conjecture. Partition the space of policy outcomes into subsets ∆θ ⊂ ∆, where

0 ≤ θ < n indicates the number of legislators receiving zero share of the dollar:

(8) ∆θ =

(
x ∈ ∆ |

nX
i=1

I{0} (xi) = θ

)

Our conjecture is built on the intuition that equilibrium proposals involve ‘minimum winning

coalitions’ (Riker, 1962), such that at most m = κ+ 1 legislators receive a positive fraction

of the dollar in each period. As a result, ∆θ with θ ≥ κ is an absorbing set, one that is

reached in at most one period from any initial allocation of the dollar.

7Indeed (subgame perfect) equilibirum may fail to exist in such games (Harris, Reny, and Robson, 1995).

Existence theorems apply only in special classes of stochastic games with uncountable action and state spaces

(e.g. Chakrabarti, 1999). Generalized equilibria that require some form of public randomization also exist

(e.g. Duffie et al. 1994).
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Now suppose exactly a majority of legislators have a positive fraction of the dollar, i.e.

s ∈ ∆κ. If legislators with zero share of the dollar are willing to accept a different (optimal)

proposal that allocates them zero as well8, then the proposer can extract the whole dollar if

the status quo allocates her a positive amount. If the proposer’s allocation is zero instead,

she may need to allocate a positive amount to one more player in order to obtain a majority

for her proposal. In either case, starting from an allocation in ∆κ, the game moves into

set ∆θ>κ in one period since n ≥ 5. Once this happens there exists a sufficient number of

legislators with zero share of the dollar in order for the proposer to extract the whole dollar

ever after.

<<INSERT TABLE 1 ABOUT HERE>>

We illustrate this path of play with an example in Table 1 for the case n = 5. The

equilibrium conjecture suggests the possibility of solving the game backwards from the period

when absorption to the set of outcomes that give zero to n−1 = 2κ legislators takes place, to

arbitrary initial allocation of the dollar. It is by means of this strategy that we demonstrate

the advertised result.

In the remainder of this section we characterize equilibrium proposals and continuation

values for all cases when the status quo is an allocation with a bare minority κ or more

legislators having zero share of the dollar (i.e. θ is equal to n−1, n−2, ...,m, κ, respectively).

We derive continuation values on the basis of these proposal — and voting — strategies.

We then use the expected utility function of players derived from this construction in the

following section where we establish that these proposal and voting strategies form part of

8As we shall show, legislators strictly prefer such proposals in this case because they can extract more of

the dollar in the next period.
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a MPNESUV.

i. κ < θ ≤ 2κ = n−1 Denote elements of∆2κ by e
j where ejj = 1, i.e. the dollar is allocated

to player j. According to the conjectured equilibrium for all s ∈ ∆θ with κ < θ ≤ 2κ the

proposer can form a majority to extract the whole dollar. Since for all subsequent periods

we have s ∈ ∆2κ, the proposer can successfully extract the whole dollar ever after. Hence,

in any period with s ∈ ∆θ, κ < θ ≤ 2κ, each i ∈ N expects to receive utility u (1) = 1 with

probability πi and utility u (0) = 0 otherwise in all subsequent periods. We can then write

the continuation value of player i as:

(9) vi (s) = vi =
πi
1− δ

, i ∈ N, s ∈ ∆θ>κ

ii. θ = κ Unlike the above cases, when θ = κ some proposers cannot secure a majority in

order to extract the whole dollar. This occurs when the proposer is one of the κ legislators

with zero share of the dollar. Without loss of generality, let s be such that 0 = s1 = s2 =

... = sκ < sm ≤ sm+1 ≤ ... ≤ sn. This situation is depicted graphically in Figure 1.

<<INSERT FIGURE 1 ABOUT HERE>>

If legislator i < m is recognized, she must allocate a positive amount to (at least) one

of legislators m,...,n. Suppose she does so for only one of those legislators, say legislator j.

Call this proposal z ∈ ∆n−2. Since n−2 > κ, z is such that legislators’ continuation value is

determined by equation (9). Then, the proposer’s utility from z is Ui (z) = ui (z)+ δvi (z) =

u (zi)+δvi, i.e. the proposer wishes to minimize the amount zj = 1−zi allocated to coalition

partner j.
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In general, this amount is a function of the state s, so denote it by z (s). If all i < m

play a pure proposal strategy (we shall soon show this is not always the case in equilibrium)

and choose legislator j as coalition partner, then z (s) must be such that u (z (s)) + δvj =

u (sj)+ δ [πju (1) +
Pκ

i=1 πiu (z (s)) + (1−
Pκ

i=1 πi − πj)u (0) + δvj]. From this we obtain

u (z (s)) =
u (sj)

1− δ
Pκ

i=1 πi
. z (s) is minimum when j = m and we can assume under this

conjectured play that the proposer chooses the legislator with the smallest positive share of

the dollar sm.

We will now show that these proposal strategies may not be equilibrium depending on

the distribution of sj, j ≥ m. To this end, define the demand of a legislator as follows:

Definition 2 The demand of legislator i for an alternative x, di (x) is

(10) di (x) ≡ max {Ui (x)− δvi, 0}

The demand di (x) is the minimum level of stage utility required by player i in order to

vote yes on a proposal in ∆θ>κ when the status quo is x. If legislator m is always chosen as

coalition partner as above, we have dm (s) =
u (sm)

1− δ
Pκ

i=1 πi
. The demand of legislator h > m

is obtained by solving dh (s) + δvh = u (sh)+ δ [πhu (1) + (1− πh)u (0) + δvh] from which

we get dh (s) = u (sh), h > m.

Now, if u (sm+1) <
u (sm)

1− δ
Pκ

i=1 πi
proposer i < m has an incentive to allocate an amount

sm+1 to legislator m + 1 instead of choosing m as a coalition partner, since sm+1 < z (s)

satisfies the demand of legislator m + 1. For the same reason no pure strategy proposal

z ∈ ∆n−2 that involves a coalition partner h > m can be equilibrium in these cases since

proposers would rather deviate and offer an amount sm to legislator m. Thus, for certain

status quo s, equilibrium requires mixed proposal strategies such that a number of b, 1 ≤ b ≤
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m, legislators may become coalition partners of proposers i < m with positive probability.

To construct such mixed strategies, let µbj be the probability with which legislator j =

m,m+1, ...,m+b−1 is allocated amount zb (s) by all proposers i < m. As a special case, in the

pure strategy equilibrium we considered above we have b = 1, u (z1 (s)) =
u (sm)

1− δ
Pκ

i=1 πi
, and

µ1m = 1. In general, it must be that u (zb (s))+δvj = u (sj) +δ
£
πj + (

Pκ
i=1 πi)µ

b
ju (zb (s)) + δvj

¤
.

Solving for µbj we obtain
9:

(11) µbj =
u (zb (s))− u (sj)
δu (zb (s))

Pκ
i=1 πi

Adding the requirement that
Pκ+b

j=m µ
b
j = 1 on equation (11) we can solve for u (zb (s))

(12) u (zb (s)) =

Pκ+b
j=m u (sj)

b− δ
Pκ

i=1 πi
.

Thus, zb (s) = u
−1
Ã Pκ+b

j=m u (sj)

b− δ
Pκ

i=1 πi

!
, and the utility received by any of the b potential coali-

tion partners is an average of the individual stage utilities of these b players inflated by a

quantity that depends on the discounted overall probability they are included in the coalition

δ
Pκ

i=1 πi.

It remains to ensure that (a) proposer i does not prefer to coalesce with a different

legislator, say h = m + b, and that (b) probabilities µbj are well defined. Since the demand

of player m+ b is dm+b (s) = u (sm+b), the first requirement amounts to showing u (zb (s)) ≤

u (sm+b). Substituting from (12) for u (zb (s)), writing u (sm+b) as
Pm+b

j=m u (sj)−
Pκ+b

j=m u (sj),

and re-arranging terms we get

Pκ+b
j=m u (sj)

(b− δ
Pκ

i=1 πi)
≤

Pm+b
j=m u (sj)

(b+ 1− δ
Pκ

i=1 πi)
, hence

(13) u (zb (s)) ≤ u (sm+b)⇐⇒ u (zb (s)) ≤ u (zb+1 (s))

Furthermore, to show that µbj are well defined probabilities it suffices to establish that

(14) u (zb (s)) > u (sj) , j = m,m+ 1, ...,m+ b− 1
9If
Pκ
i=1 πi = 0, no i < m ever gets to propose, so this solution is well defined in the relevant cases.
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Indeed, equation (11) along with the fact that we have required
Pκ+b

j=m µ
b
j = 1 ensure µ

b
j > 0.

It turns out we can simultaneously ensure the validity of conditions (13) and (14). In par-

ticular, condition (13) can equivalently be written as
Pκ+b

j=m u (sj) ≤ u (sm+b) (b− δ
Pκ

i=1 πi)

so that after adding u (sm+b) on both sides and re-arranging terms we get an alternative

equivalent expression:

(15) u (zb (s)) ≤ u (sm+b)⇐⇒ u (zb+1 (s)) ≤ u (sm+b)

We then have the following algorithm for the construction of the equilibrium proposal

strategies specified in (11) and (12):

1. Start with b = 1; if u (z1 (s)) ≤ u (sm+1) then stop.

2. If u (zb (s)) > u (sm+b), mix with b + 1 legislators; the contra-positive of (15) ensures

that µb+1j > 0 for j = m, ...,m+ b, i.e. condition (14) is satisfied.

3. Proceed as above until u (zb (s)) ≤ u (sm+b) or until b + 1 > m. In the latter case, an

equilibrium of this type fails to exist.

Thus a necessary condition for an equilibrium to exist, possibly mixing with all m

legislators m, ..., n, is u (zm (s)) ≤ 1. For general s ∈ ∆κ this condition can be written as:

(16)

Pn
i=1 I(0,1) (si)u (si)

m− δ
Pn

i=1 I{0} (si)πi
≤ 1, s ∈ ∆κ

It is straightforward to verify that (16) holds for all s ∈ ∆κ if and only if:

(17)
m

m− δbπu
µ
1

m

¶
≤ 1

where

(18) bπ = max
C

(X
i∈C

πi | C ⊂ N, |C| = κ

)
.
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A number or remarks are in order:

Remark 1 Probabilities µbj constructed above are unique for any s ∈ ∆κ, although there is

an infinity of mixed strategies by players i = 1, 2, ...,κ that induce these probabilities.

Also, given the above probabilities and the continuation values for players derived so

far, we can calculate the expected utility function of players for any x ∈ ∆θ≥κ.

Remark 2 Let x ∈ ∆θ≥κ and without loss of generality let i > h =⇒ xi ≥ xh. Then Ui (x)

can be written as:

(19) Ui (x) =

u (xi) + δvi if i = m+ b, ..., n

ed (x) + δvi if i = m, ...m+ b− 1

δπiu (1− zb (x)) + δ2vi if i = 1, ...,κ

where ed (x) ≡ u (zb (x)) = Pm+b−1
j=m u (xj)

b− δ
Pκ

i=1 πi
such that

(20) u (xm+b−1) < ed (x) ≤ u (xm+b)
Notice that ed (x), x ∈ ∆κ, is the demand of the b legislators with positive probability of

receiving funds from a proposer j with allocation xj = 0. When x ∈ ∆θ>κ we have ed (x) = 0.
By construction,

Definition 3 ed (x) is the minimum demand among the majority of m players with the high-

est demands.

It also follows immediately from the expected utility function in (19) that:

Remark 3 For s ∈ ∆κ we have Ui (e
j) > Ui (s) , j 6= i for all i with si = 0.
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In other words, player i with si = 0 strictly prefers a proposal that allocates the whole

dollar to another player over a status quo s ∈ ∆κ. This is because s and e
j imply an identical

stream of payoffs for i except for the fact that with s as the status quo i has to satisfy the

demand ed (s) > ed (ej) = 0 when proposing, whereas i can extract the whole dollar when the
status quo is ej, i 6= j.

In the next few lemmas we establish a number of important properties of the expected

utility function in (19).

Lemma 1 For all x ∈ ∆θ≥κ,(a) Ui (x) is continuous with respect to x ∈ ∆θ≥κ, (b)

(21) xi ≥ xj =⇒ di (x) ≥ dj (x) ,

and (c) for every C ⊂ N with |C| = κ and xi = 0 for all i ∈ C, we have ∂Uj (x)

∂xj
|xi=0,i∈C > 0

for all j such that u (xj) > ed (x).
Proof. Without loss of generality let x be such that i > h =⇒ xi ≥ xh. Then utilities

Ui (x) are given in equation (19). Note that u is continuous and so part (a) follows if xm = 0

whence ed (x) = z1 (x) =
u (0)

1− δπm
= 0 ≤ u (xm+1), or for x such that ed (x) < u (xm+b),

since u (zb (x)) is also continuous. It remains to show continuity for the cases when x is

such that ed (x) = u (zb (x)) = u (xm+b) = ... = u (xm+b+g−1) < u (xm+b+g) ⇐⇒ u (zb (x)) =

u (zb+1 (x)) = ... = u (zb+g (x)) < u (zb+g+1 (x)) which, assuming arbitrary g, 1 ≤ g ≤ m− b,

exhausts all possibilities. In these cases, continuity holds for Ui (x), i = m+ b+ g, ..., n, by

the continuity of u. To show continuity for the remaining players, let ed (x) = y. Consider
any sequence xk ∈ ∆θ≥κ such that xk −→ x. By the continuity of u there exists high enough

q so that u
¡
xki
¢
> u

¡
xkh
¢
if xi > xh, for all k > q. Thus, for k > q, it is safe to only consider

changes in the ordering of legislators according to their allocation induced by x for the g
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legislatorsm+b, ...,m+b+g−1 with u (xm+b) = ... = u (xm+b+g−1). For any subset C of these

legislators define u
¡
zC
¡
xk
¢¢
=

Pm+b−1
i=m u

¡
xki
¢
+
P

i∈C u
¡
xki
¢

b+ |C|−Pn
i=1 I{0} (xi)πi

. For any k let Ckl be a subset

of {m+ b, ...,m+ b+ g − 1} with cardinality l such that i ∈ Ckl , j /∈ Ckl =⇒ u
¡
xki
¢
< u

¡
xkj
¢

and u
³
zCkl

¡
xk
¢´ ≤ u ¡xkj ¢ for all j /∈ Ckl . Then

Ui
¡
xk
¢
=


u
³
zCkl

¡
xk
¢´
+ δvi if i ∈ Ckl

u
¡
xki
¢
+ δvi if i /∈ Ckl

’i = m+ b, ...,m+ b+ g − 1

But from u
¡
xki
¢ −→ u (xi) = y for all i = m + b, ...,m + b + g − 1 we get u

¡
zC
¡
xk
¢¢ −→Pm+b−1

i=m u (xi) + |C| y
b+ |C|−Pn

i=1 I{0} (xi)πi
= u

¡
zb+|C| (x)

¢
= y for all C ⊂ {m+ b, ...,m+ b+ g − 1} and so

Uj
¡
xk
¢ −→ Uj (x) = y + δvj for all j = m, ...,m + b + g − 1. By the same argument we

obtain Uj
¡
xk
¢ −→ Uj (x) = δπiu (1− zb (x)) + δ2vi for j = 1, ...,κ. Part (b) holds by (20),

the fact that di (x) = u (xi) for all i with u (xi) > ed (x), and since di (x) = 0 for all i with
xi = 0. Finally, (c) follows directly from u0 > 0.

Following is a technical lemma that provides additional information about the structure

of the expected utility functions in (19):

Lemma 2 Let s ∈ ∆θ≥κ and let eπ = Pn
i=1 I{0} (si)πi. There exist unique Sb ∈ (0, 1) for

b < m and Sm = 1 such that

(22) max
s

ned (s) | ed (s) ≤ u (sm+b)o = b

b− δeπu
µ
Sb
b

¶
= u

µ
1− Sb
m− b

¶

(23)
b

b− δeπu
µ
Sb
b

¶
≤ b+ 1

b+ 1− δeπu
µ
Sb+1
b+ 1

¶
, 1 ≤ b < m,

and

(24) max ed (s) = m

m− δeπu
µ
1

m

¶
.
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Proof. W.l.o.g. for each 1 ≤ b < m we seek a solution to the following program:

max
{sm,...,sn}

Pκ+b
i=m u (si)

b− δeπ subject to(25) Pκ+b
i=m u (si)

b− δeπ ≤ u (sm+b)(26)

sj ≤ sj+1, j = m, ..., n− 1(27)

nX
i=m

si = 1(28)

si ≥ 0(29)

Forming the Langrangian we obtain:

L =

Pκ+b
i=m u (si)

b− δeπ − γ

ÃPκ+b
i=m u (si)

b− δeπ − u (sm+b)
!

−
n−1X
j=m

ζj (sj − sj+1)− λ

Ã
nX
i=m

si − 1
!
−

nX
i=1

ξi (−si)

and the first order conditions are:

∂L

∂sm
= (1− γ)

1

b− δeπu0 (sm)− ζm − λ+ ξm = 0

∂L

∂sj
= (1− γ)

1

b− δeπu0 (sj)− ζj + ζj−1 − λ+ ξj = 0, j = m+ 1, ...,m+ b− 1

∂L

∂sm+b
= γu0 (sm+b)− ζm+b + ζm+b−1 − λ+ ξm+b = 0

∂L

∂sj
= −ζj + ζj−1 − λ+ ξj = 0, j = m+ b+ 1, ..., n− 1

∂L

∂sn
= ζn−1 − λ+ ξn = 0

γ
∂L

∂γ
= λ

∂L

∂λ
= ζj

∂L

∂ζj
= ξi

∂L

∂ξi
= 0, j = m, ..., n− 1, i = m, ..., n

γ, ζj, ξi ≥ 0, j = m, ..., n− 1, i = m, ..., n

Note that fb (S) ≡ b

b− δeπu
µ
S

b

¶
− u

µ
1− S
m− b

¶
is a continuous function of S with f 0b > 0,

fb (0) < 0, and fb (1) > 0 so that there exists a unique Sb ∈ (0, 1) such that fb (Sb) = 0.
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Thus, a solution of the form sm = ... = sm+b−1 =
Sb
b
and sm+b = ... = sn =

1− Sb
m− b satisfies

constraint (26) with equality; it also satisfies constraints (28), (29), and (27), the latter by

the fact that
b

b− δeπ > 1 and the monotonicity of u. Denote the above feasible solution by sb.
Then, ξj = 0, j = m, ..., n, ζn−1 = λ, ζj = (n− 1− j)λ, j = m+ b+1, ..., n− 1, ζm+b−1 = 0,

ζj = 0, j = m, ...,m + b − 1, γ =
(n− (m+ b) + 1) 1

b− δeπu0
µ
Sb
b

¶
(n− (m+ b) + 1) 1

b− δeπu0
µ
Sb
b

¶
+ u0

µ
1− Sb
m− b

¶ , λ =
1

b− δeπu0
µ
Sb
b

¶
u0
µ
1− Sb
m− b

¶
(n− (m+ b) + 1) 1

b− δeπu0
µ
Sb
b

¶
+ u0

µ
1− Sb
m− b

¶ , satisfy the maximization conditions and sb
is a maximizer of (25). Similarly, sm with sm = ... = sn =

1

m
is a maximizer in the case b = m.

To show (23) notice that from u (zb (sb)) = u

µ
1− Sb
m− b

¶
we have u (zb (sb)) = u (zb+1 (sb)) by

(13). Since sb+1 maximizes u (zb+1 (·)) we have zb+1 (sb) ≤ zb+1 (sb+1) which proves (23); (24)

follows.

Notice that we have not characterized proposal strategies — and expected utility func-

tions — over status quo s ∈ ∆θ<κ. Thus, we cannot ascertain the optimality of the proposal

strategies we characterized above for s ∈ ∆θ≥κ over all feasible outcomes in W (s). Yet, (19)

allows us to check whether these proposals are optima over outcomes in W (s) ∩∆θ≥κ. We

do so in the following lemma:

Lemma 3 Proposal strategies for s ∈ ∆θ≥κ are optimal over alternatives in W (s)∩∆θ≥κ if

(30)
m

m− δbπu
µ
1

m

¶
≤ u

µ
1

2

¶
, and

(31)
κ

κ− δbπu³zκ´ ≤ u (z) , z ≤ Sκ
where Sκ is defined in Lemma 2 and bπ is defined in (18). These conditions are also necessary
if πi =

1

n
for all i ∈ N .
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Proof. Remark 3 ensures that proposals receive majority approval. Thus, character-

ized proposals are feasible, and we need show optimality.

Sufficiency: From (19) no proposer can do better than extract the entire dollar, i.e.

ei ∈ argmax {Ui (x) | x ∈∆θ≥κ} , i ∈ N , so we only need consider the optimality of proposals

for cases when s ∈ ∆κ and proposer i is such that si = 0. According to equilibrium, in

these cases i allocates zb (s) such that u (zb (s)) = ed (s) to one of b legislators and retains
1−zb (s) for herself. Thus, the utility of proposer i is Ui (0, ..., zb (s) , 0, ..., 0, 1− zb (s) , 0, ...) =

u (1− zb (s))+δvi. By part (c) of Lemma 1 these proposals are optima among proposals z ∈

W (s)∩∆θ≥m. It remains to show that there exists no x ∈ argmax {Ui (z) | z ∈W (s) ∩∆κ}

such that Ui (x) > Ui (z) for all z ∈W (s)∩∆θ≥m. To establish a contradiction, assume that

such x exists and w.l.o.g. re-enumerate x and s so that i > j =⇒ xi ≥ xj. We shall show a

contradiction in a number of steps:

(1) xj > 0 and Uj (x) ≥ Uj (s) for at least some j with sj > 0. If sj > 0 and xj = 0, we

have Uj (x) < Uj (s). Thus if statement does not hold for at least one of m legislators with

sj > 0, x /∈W (s).

(2) dn−1 (x) > u (xn−1). Assume the contrary. Then we must have dn−1 (x) = u (xn−1)

and dn (x) = u (xn) by (21). Consider that among legislators satisfying the criterion in step

(1) with minimum sj > 0, say legislator h. Then construct an alternative w that allocates

0 to all but legislators i and h and, if h < n, allocates xn−1 to h and (1− xn−1) > xi to i

or, if h = n, allocates xn to h and (1− xn) > xi to i. Then clearly Uh (w) ≥ Uh (x), while

equation (21) ensures Ui (w) > Ui (x). But w ∈ W (s) since Ul (w) > Ul (s) for all l with

sl = 0, which contradicts Ui (x) > Ui (z) for all z ∈W (s) ∩∆θ≥m.
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(3) dn−1 (x) < dn (x). Suppose dn−1 (x) = dn (x) instead. From step (2) we have

ed (x) = dm (x) = ... = dn (x). Lemma 2, and the fact that i optimizes imply di (x) = dj (x) =
m

m− δeπu
µ
1

m

¶
≤ u

µ
1

2

¶
for any j identified in step (1). But proposal w with wi = wj =

1

2

is such that Uj (w) ≥ Uj (x), Ui (w) > Ui (x). We also have w ∈W (s) since Uh (w) > Uh (s)

for all h, sh = 0. The above contradict Ui (x) > Ui (z) for all z ∈W (s) ∩∆θ≥m.

From steps (2) and (3), x is such that dh (x) = zκ (x) < dn (x) = u (xn), h = m, ..., n−1.

From lemma 2 we have dn−1 (x) ≤ κ

κ− δbπu
µ
1− xn

κ

¶
, and 1−xn ≤ Sκ. From (31) we obtain

κ

κ− δbπu
µ
1− xn

κ

¶
≤ u (1− xn). Now proposal w with wi = 1 − xn, wj = xn if i < n or

with wi = xn, wj = 1 − xn if i = n is such that Uj (w) ≥ Uj (x), Ui (w) > Ui (x), and

w ∈ W (s) since Uh (w) > Uh (s) for all h with sh = 0, which contradicts Ui (x) > Ui (z) for

all z ∈W (s) ∩∆θ≥m. Thus x ∈ argmax {Ui (z) | z ∈W (s) ∩∆κ} cannot be proposed in an

equilibrium proposal strategy.

Necessity when πi =
1

n
for all i ∈ N : u (zm (s)) = m

m− δ
κ

n

u

µ
1

m

¶
, for all s with

m members receiving
1

m
. Suppose

m

m− δ
κ

n

u

µ
1

m

¶
> u

µ
1

2

¶
, contrary to (30). Then any

proposer i with si = 0 receives Ui (z) = u (1− zm (s)) + δvi under the equilibrium while she

could achieve majority and a higher utility
m

m− δ
κ

n

u

µ
1

m

¶
+ δvi > Ui (z) by allocating

1

m

to herself and κ other legislators. Further assume contrary to (31) that for some z ≤ Sκ,
κ

κ− δ
κ

n

u
³z
κ

´
> u (z). Continuity of Ui (s) and (22) in lemma 2, ensure there exists s ∈ ∆κ

such that ed (s) = u (z). Then any proposer i with si = 0 expects Ui (z) = u (1− z) + δvi

under the equilibrium while she could achieve majority and a higher utility by allocating

1− z+ ε to herself and
z − ε

κ
to the κ remaining legislators 1, ..., i−1, i+1, ..., m with ε > 0

small enough to ensure
κ

κ− δ
κ

n

u

µ
z − ε

κ

¶
= u (z).
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Besides showing (restricted) optimality of proposals, lemma 3 establishes two additional

conditions for the existence of equilibrium (equations (30) and (31)) besides (17). Condition

(30) ensures that the proposer is better off buying a single legislator among those with

positive amount instead of allocating an equal amount
1

m
to all members in the winning

coalition. Similarly, condition (31) ensures that it is not less expensive for the proposer

to buy the influence of a single legislator by splitting the same amount equally among κ

legislators besides herself.

<<INSERT FIGURE 2 ABOUT HERE>>

Both conditions (30) and (31) are easier to satisfy if the stage utility u displays a smaller

degree of risk aversion (or rises at a slower rate), or if the legislature is large, or if the discount

factor is small ceteris paribus. We leave it to the reader to ascertain that all conditions are

satisfied in the case of risk neutrality. Figure 2 depicts a situation when condition (30) is

satisfied in the presence of risk aversion. Note that (17) is implied by (30) whereas (30) and

(31) are independent. In the form stated in lemma 3 the two conditions are sufficient only

and become necessary and sufficient when probabilities of recognition are symmetric. There

exists a more general version of these conditions that renders them necessary and sufficient

even if recognition probabilities are asymmetric, but we do not pursue this generalization

here.

iii. θ < κ To establish an equilibrium then it remains to specify proposal strategies for all

s ∈ ∆θ<κ, and establish optimality of these and above proposals over all feasible alternatives

z ∈ W (s). The complexity of the analysis and the multiplicity of cases (see for example

Kalandrakis, 2002 for a simpler version of a similar problem) makes it impossible to charac-
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terize the equilibrium in closed form. Yet, we are able to provide relatively tight bounds for

the range of the model’s parameters for which an equilibrium exists. This equilibrium has

the property that if the game starts with a status quo s ∈ ∆θ<κ a decision with at least a

bare minority of players receiving zero prevails in that period, and the game is subsequently

played in the manner we have characterized in closed form in this section. This result and

additional properties of the equilibrium are discussed in what follows.

4. RESULTS

In this section we state and discuss the main findings of the analysis. Our chief result

is the existence of an equilibrium with the dynamics outlined in the previous section. We

provide sufficient conditions for such an equilibrium to exist under risk aversion and/or risk

neutrality. Except for the case n = 5 when we effectively constrain the discount factor to

be smaller than
5

8
, we show that a sufficient condition for existence of equilibrium under

risk neutrality is that probabilities of recognition of individual legislators are bounded where

these bounds are less restrictive for smaller discount factor or for larger legislatures. If

probabilities of recognition are more symmetric than what is required by these bounds, an

equilibrium also exists for sufficiently mild concavity of the stage utility u. Specifically:

Proposition 1 If (a) u (x) = x, n = 5, δ ≤ 5
8
, πi ≤ m− δ − 2

δm
for all i, or if (b) u (x) = x,

n > 5, πi ≤ m− δ − 2
δm

for all i, or (c) under either of the above cases with u (x)−x < ε and

individual πi sufficiently smaller than
m− δ − 2

δm
, there exists a MPNESUV such that for all

measurable Y ⊆ ∆:

1. Y ∩∆θ≥κ = ∅ =⇒ µi [Y | s] = 0, for all s ∈ ∆θ<κ and all i ∈ N ,
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2. Y ∩∆n−2 = ∅ =⇒ µi [Y | s] = 0 for all s ∈ ∆κ and all i with si = 0,

3. Y ∩ {ei} = ∅ =⇒ µi [Y | s] = 0 for all s ∈ ∆κ and all i with si > 0 or for all s ∈ ∆θ>κ

and all i ∈ N .

Proof. See Appendix.

<<INSERT FIGURE 3 ABOUT HERE>>

The Markov process over policy outcomes induced by this equilibrium is illustrated in

Figure 3. We emphasize that the conditions of the theorem are sufficient only, and that the

above equilibrium may (and indeed does) exist for a wider range of the parameter space.

But even in the case of risk-neutrality we can show via simple examples that an equilibrium

does not exist for some parameter values outside these bounds, so that these conditions

are not void. We conjecture that in those cases when an equilibrium in the form required

by proposition 1 does not exist, there may exist MPNESUV such that outcomes are also

absorbed in ∆n−1 but with some delay, i.e. in more than three periods.

The equilibrium is not unique already from the construction of mixed proposal strate-

gies in subsection 3.ii, as we point out in Remark 1. The fact that all these equilibria are

payoff equivalent, poses the question whether the class of MPNESUV for this game are pay-

off equivalent in analogy to the result of Eraslan, 2002 for the Baron and Ferejohn, 1989,

model. Although we do not resolve the question of payoff equivalence10, the significance of

our result lies on a number of properties of the equilibrium, besides its existence.

10By payoff equivalence we mean identical expected utility Ui (s) for the same state s. We conjecture that

payoff equivalence is less likely to hold, if at all, for less symmetric probabilities of recognition.
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First, in equilibrium the support of the steady state distribution of decisions is a finite

set. Despite the fact that majority rule induces a social preference cycle that encompasses

the whole space of alternatives, only the n outcomes in the set ∆n−1 are reached by the

committee upon absorption. In addition, after period 3 there is probability
Pn

i=1 π
2
i that

the same decision prevails between consecutive periods so that we don’t observe perpetual

instability of decisions. Cycling and intransitivities of majority rule do not imply inability

to decide nor inability to predict outcomes at any given point in time.

Furthermore, convergence to the steady state distribution is fast and takes place within

a maximum of three periods. Convergence occurs with certainty in finite time, whereas for

n = 3 Kalandrakis, 2002 obtains probabilistic convergence in finite time. The difference

arises from the fact that with n = 3 there are initial status quo and a path of play by nature

such that the legislator excluded from last period’s allocation is recognized in each period

and is unable to extract the whole dollar. Thus, absorption may require more than three

periods when n = 3.

Besides resolving questions as to the prevalence of chaos in this distributive, dynamic

decision making environment, our analysis permits a comparison of equilibrium outcomes

with set theoretic solutions for majority rule games. Such comparisons are extensive in

the literature. For example, in the one-dimensional space considered by Baron, 1996, a

static majority rule core point exists at the median and this also constitutes the long-run

absorbing set of the game. Similarly, Banks and Duggan, 2000, show core implementation in

the general version of the Baron-Ferejohn bargaining model they consider. In both cases the

core is defined on the basis of the stage utilities of legislators as opposed to the discounted
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sum of the payoffs from the entire sequence of decisions11. In the model we consider a core

point does not exist, hence a generalization of the notion of the core is in order. One relevant

generalization is the uncovered set (Fishburn, 1979, Miller, 1980), which we define below.

Definition 4 An alternative y covers an alternative x if y Â x and x Â z =⇒ y Â z, where

Â represents the strong majority preference relation.

On the basis of the above covering relation we can define the following sets of alterna-

tives:

Definition 5 The uncovered set of an alternative w ∈ ∆, UC (w), is the set of all elements

of ∆ that are not covered by w when the majority preference relation is defined on the basis

of the stage utility function ui.

Similarly we define:

Definition 6 The uncovered set of ∆, UC (∆), is the set of all elements of ∆ that are

not covered when the majority preference relation is defined on the basis of the stage utility

function ui.

Shepsle and Weingast, 1984, show that if voters are sophisticated and for finite amend-

ment agendas starting with a status quo w the outcome of the vote can only lead to ele-

ments of UC (w), i.e. alternatives not covered by w. They also argue that competitively

constructed agendas can only result in decisions that belong in the uncovered set, UC (∆)

under amendment agendas.
11In the Baron-Ferejohn model the space of possible sequences of decisions is a vector that has the decision

at the period when agreement is reached, and an alternative that accrues zero to each legislator as coordinates

for all the remaining periods.
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The following results show that there is little relation between the above findings and

the outcomes that prevail in the dynamic framework we consider.

Proposition 2 Under the characterized MPNESUV, a decision x may prevail with s as the

status-quo and x /∈UC (s).

Proof. We can construct an example exploiting Remark 3. Specifically, assume

u (x) = x, πi =
1

n
, for i ∈ N , and consider s = (ε, ..., ε,α, β − ε, ...,β − ε), with α =

1 − κβ, β > 0,
nα

n− δκ
< β, and ε > 0 and small. We claim equilibrium proposals12 are

identical to those that prevail for status quo s0 = (0, ..., 0,α,β, ..., β) ∈ ∆κ. Specifically,

legislators j = m, ..., n successfully propose ej ∈ ∆n−1, while legislators i = 1, ...,κ optimize

by allocating z1 (s
0) =

α

1− δ
κ

n

=
nα

n− δκ
< β − ε to legislator m and retaining the rest of

the dollar. Indeed, legislator i’s, i = 1, ...,κ, expected utility from the status quo with the

above proposal strategies is given by Ui (s) = ε+ δ

·
1

n

µ
1− nα

n− δκ

¶
+ δvi

¸
< Ui (e

j) = δvi,

j = m, ..., n for sufficiently small ε so that i = 1, ...,κ strictly prefer a proposal that allocates

the whole dollar to j over the status quo s. But all successful proposals have at most two

legislators receiving a positive fraction of the dollar, hence they are covered by s.

We obtain this result despite the fact that the agenda within each period is a (degener-

ate) amendment agenda as in Shepsle and Weingast, 1984. The discrepancy in the findings is

of course due to the fact that in our analysis legislative interaction continues after a decision

is reached in any one period. Thus, legislators may strictly prefer outcomes that reduce their

allocation compared to the status quo.

12More precisely, there exists an equilibrium with such proposals, i.e. these proposal strategies constitute

a fixed point of the mapping used in the proof of proposition 1.
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Our second result relies on existing characterization of the uncovered set in the dis-

tributive framework:

Proposition 3 If u (x) = x, and irrespective of the initial allocation of the dollar or the

discount factor, equilibrium decisions xt /∈ UC (∆) for all t ≥ 3 under the characterized

MPNESUV.

Proof. Elements in ∆n−1 are covered (Epstein, theorem 2, p 88-89, and Maggie Penn,

2001)13.

Given the fact that we analyze a dynamic game, one may argue that a dynamic

definition of the uncovered set is called for, while the above results apply for the stage-

defined covering relation. More to the point, the true space of possible alternatives in this

game constitutes of lotteries over the stream of decisions {xt}+∞t=τ+1, following a decision

xτ in arbitrary period τ . Call this space Ψ with generic element exτ . With appropriate
assumptions on these lotteries we can define expected utility for player i as EUi (exτ ) =
ui (x

τ) + δExτ
£
Vi
¡{xt}+∞t=τ+1¢¤. It appears then natural to consider the following definition

of the uncovered set:

Definition 7 The uncovered set of Ψ, UC (Ψ), is the set of all elements of Ψ that are

not covered when the majority preference relation is defined on the basis of expected utility

EUi (exτ ).
Since the equilibrium we characterize exists in the presence of (mild) risk aversion,

the stream of payoffs to players may also be ex ante Pareto inefficient and belong in the

uncovered set according to the above definition. Specifically:
13Epstein uses a slightly different definition of the uncovered set, although his theorem applies for the

definition of the covering relation we use here. I thank Maggie Penn for pointing this out.
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Proposition 4 Under the characterized MPNESUV outcomes may be ex ante inefficient

and equilibrium lotteries may not belong in UC (Ψ), for all t ≥ 3.

Proof. Assume πi > 0 for all i ∈ N and (mild) risk aversion. Consider allocation y ∈ ∆

with yi = πi for each period t ≥ 3; it constitutes a Pareto improvement over equilibrium

lotteries since u (πi) > πi > 0 and we have
P+∞

t=3 δ
t−1ui (y) =

P+∞
t=3 δ

t−1u (πi) >
P+∞

t=3 δ
t−1πi.

Consider then eyτ ∈ Ψ given by eyτ ≡ {y}+∞t=τ+1. Since for every decision in period τ ≥ 3,

EUi (eyτ ) ≥ P+∞
t=3 δ

t−1πi for all i, the equilibrium induced lottery is covered since every

alternative in Ψ that is beaten by the equilibrium lottery is also beaten by eyτ .
Despite the possible inefficiency of equilibrium outcomes and the fact that proposers

exercise disproportionate power within each period they are recognized, the overall ex ante

payoff of players can be very equitable if legislators are patient. In other words, since for

many purposes it is the ex ante discounted sum of within period payoffs that is relevant for

distributional comparisons, the power of the agenda setter may be constrained in the overall

game even though it is not constrained within each period.

Unfortunately, this is not always the case. If we calculate the power of an agenda

setter in relation to her ideal point defined over the entire stream of payoffs in the game,

an analogous result to that of McKelvey, 1976, 1979, obtains for sufficiently small discount

factors or for large enough legislature even though voters are strategic. In particular, when

u (x) = x and for every initial allocation x0 ∈ ∆ an equilibrium exists if πi ≤ m− δ − 2
δm

.

Since m = κ+ 1 we have the following corollary of proposition 1:

Corollary 1 (Dictatorship) For κ ≥ 1 + 2δ
1− δ

, πi = 1, u (x) = x and any initial allocation

x0 ∈ ∆ there exists a MPNESUV such that i extracts the whole dollar in every period t ≥ 3.
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Finally, our analysis produces different comparative statics than those induced in mod-

els without recurrent decisions. One instance of this discrepancy is the role of risk-aversion

that is completely different in this model than in the model of Baron and Ferejohn, 1989. In

particular, Harrington, 1990, shows that higher degrees of risk aversion increase the power

of the proposer, while we have established that the characterized equilibrium collapses when

risk aversion is high.

We now establish a similar counter-result with regard to the effect of probabilities of

recognition on the demands of individual legislators. Eraslan, 2002, shows that in the Baron

and Ferejohn model legislators with higher probabilities of recognition are more expensive

coalition partners ceteris paribus. This is because if a proposal is rejected in the current

period, then these legislators will be able to extract the surplus in the following period with

higher probability. Probabilities of recognition have the opposite effect in the model we

analyze. Legislators with high probability of being recognized are more willing to accept

a bad proposal in the current period, since it allows them to extract more of the dollar in

the following period. We shall show this for the case of risk-neutrality which is the case

comparable to the analysis of Eraslan. Specifically:

Proposition 5 If u (x) = x, the characterized MPNESUV is such that for i 6= j with si = sj
and πi > πj, di (s) ≤ dj (s) for every s ∈ ∆. If di (s) < dj (s) then s ∈ ∆θ<κ.

Proof. For s ∈ ∆θ≥κ we immediately have from (19) that si = sj =⇒ di (s) = dj (s).

For s ∈ ∆θ<κ, assume di (s) > dj (s) to show a contradiction. To reduce the notational

burden below we write dh for dh (s), h ∈ N . We will also use the notation:

• Dl, the amount allocated by proposer l to the remaining players,
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• µhl, the probability that player h 6= l allocates a positive amount to l, and

• ml
h (z), the conditional probability distribution for the proposal strategy of h, condi-

tional on zl = 0.

We shall derive a contradiction using a series of steps:

(1) If l proposes z, Uq (s) = Uq (z) for all q 6= l with zq > 0. W.l.o.g. assume

h > g =⇒ zh ≥ zg. By step (7) in the proof of Proposition 1 proposer l optimizes by

minimizing Dl. Thus part (c) of lemma 1 guarantees the validity of the claim for q =

m + b, ..., n, q 6= l with u (zq) ≥ ed (z) = zb (z). Now let S be the sum of the amounts

allocated to players q = m, ..,m + b − 1. We have zb (z) = S

b− δ
Pκ+b

j=m πj
. Now, assume

contrary to the claim that ed (z) > dh (s) for some player h = m, ..,m+ b− 1 and let dh (s) =
min {dj (s) | j = m, ...,m+ b− 1} < zb (z). Then l may allocate bx to player h such that
dh (s) =

bx
1− δ

Pκ
j=1 πj

, ex = zb (z) > bx to the remaining b−1 players, and maintain amounts
allocated to the other players. Clearly this alternative proposal obtains majority approval

with a smaller cost. Indeed (b− 1) ex+ bx = (b− 1) S

b− δ
Pκ

j=1 πj
+ dh (s)

³
1− δ

Pκ
j=1 πj

´
<

S ⇐⇒ dh (s)
³
1− δ

Pκ
j=1 πj

´
< S−(b− 1) S

b− δ
Pκ

j=1 πj
⇐⇒ dh (s) <

S

b− δ
Pκ

j=1 πj
, which

is true so that we have a contradiction due to the fact we assumed dh (s) < u (zb (z)).

(2) The expected utility of player l, l ∈ N can be written as

(32) Ul (s) = sl + δ

"
πl (1−Dl) +

X
h6=l

πh

µ
µhldl − (1− µhl)

Z
ml
h (dz) δπl

ed (z)¶+ δvl

#
.

By steps (6) and (7) in the proof of proposition 1, l’s utility when proposing is equal to

(1−Dl) + δvl. If h 6= l proposes z, then (19) and step (1) guarantee that l receives utility

dl + δvl if zl > 0. Finally, if zl = 0, l
0s utility is −δπl ed (z) + δvl (with ed (z) possibly zero).
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(3) If dl > 0, l ∈ N then

dl =
sl − δπlDl −

P
h6=l πh (1− µhl)

R
ml
h (dz) δπl

ed (z)
1− δ

P
h6=l πhµhl

(33)

dl =
sl − δπl (Dl + dl)−

P
h6=l πh (1− µhl)

R
ml
h (dz) δ

2πl ed (z)
1− δ

³
πl +

P
h6=l πhµhl

´(34)

Both versions are derived by substituting from equation (32) in Ul (s) = dl + δvl. For (34)

add and subtract δπldl in the resultant equation and partially solve for dl leaving term −δπldl
in the right hand side.

(4) If µij = 1, Dj+dj ≤ Di+di. Let z be any proposal by i, with eπ =Pn
h=1 I{0} (zh)πh.

We distinguish three cases. Case 1: zj = dj; then j can propose w with wh = zh, h 6= i, j,

wi = di, and wj = dj+(1−Di)−di. Then Dj = 1−(dj + (1−Di)− di)⇐⇒ Dj+dj = Di+

di. Case 2: zj = dj (1− δeπ). Let l ∈ argmin {dh | h 6= j, zh > 0}. By (1) and (19) we have
dl > dj. Then j can propose w with wh = zh, h 6= i, j, l, wi = di if i 6= l, wl = dl (1− δeπ), and
retain the rest of the dollar. Then, if D is the sum of allocations that are unchanged between

z and w, when i 6= l we have Di = D+dl+dj (1− δeπ) and Dj ≤ D+dl (1− δeπ)+di. Hence,
Dj+dj ≤ Di+di =⇒ dl ≥ dj which is true. Similarly, if i = l we have Di = D+dj (1− δeπ)
and Dj ≤ D + di (1− δeπ), whence Dj + dj ≤ Di + di =⇒ di ≥ dj which is true by the

working hypothesis. Case 3: dh = dj =

P
h∈C zh
b− δeπ for a coalition of b ≥ 2 legislators (including

j) in C with zh > 0, h ∈ C. Then, j can successfully propose w with wh = zh, h /∈ C ∪ {i},

wi = di, wh = dj
(b− 1− δeπ)

b− 1 , h ∈ C − {j}, and retain the rest of the dollar. We may then

write Di = D + dj (b− δeπ) and Dj ≤ D + dj (b− 1− δeπ) + di, whence Dj + dj ≤ Di + di
=⇒ di ≤ di which is also true.

(5) If µij < 1 then Dj ≤ Di − δ (πi − πj) ed (z) for all z with zj = 0 proposed by i, and
µji = 0. Since µij < 1 there exists some z with zj = 0,

Pn
l=1 I{0} (zl)πl = eπ proposed by i. Let
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there be a set C with b ≤ κ players such that dh = ed (z) , h ∈ C andPh∈C zh = ed (z) (b− δeπ).
Then construct w such that wh = zh, h 6= i, j, and zh > ed (z), wh = ed (z) (b− δ (eπ − πj + πi))

for h ∈ C, wi = 0, and the rest of the dollar to j. w maintains majority approval since

the demand of all players previously receiving positive funds besides i is satisfied. Thus

Dj ≤ Di− ed (z) (b− δeπ)+ ed (z) (b− δ (eπ − πj + πi)) which simplifies to the first part we

wish to establish. It remains to show µji = 0. Suppose j proposes x with xi > 0 to get a

contradiction. Let Dj = D + xi. Since dj < di by the working hypothesis, i may propose

y with yh = xh if h 6= i, j and yj < xi and still obtain majority approval, whence Dj > Di
contradicting our earlier finding.

(6) dj > 0. Suppose not. Then dj = 0 and by step (6) in the proof of Proposition 1

equation (32) reduces to Uj (s) = sj + δ [πj (1−Dj) + δvj] ≤ δvj ⇐⇒ sj ≤ δπjDj. From

di > dj we have di > 0. Then, since 1 − δ
P

h6=i πhµhi ≥ δπi, we obtain from equation (33)

that di ≤ si − δπiDi
δπi

⇐⇒ δπi (Di + di) ≤ si. From steps (4) and (5) we have Dj ≤ (Di + di).

Thus, from sj = si and πi > πj we get δπi (Di + di) ≤ si =⇒ δπjDj < sj, a contradiction.

(7) µhj > µhi and zi > 0 =⇒ zj > 0 for all z proposed by h 6= i, j. Obvious if h’s

proposal z ∈ ∆θ>κ (by step (6) of proposition 1 either all or none of h’s optimal propos-

als belong in ∆θ>κ) since di > dj and h minimizes Dh. To show a contradiction in the

remaining cases, suppose h proposes z ∈ ∆κ with zi > 0, zj = 0. Construct w such that

wj = zi, wi = 0 with all remaining allocations identical to those in z. We have πi > πj =⇒Pn
h=1 I{0} (zh)πh >

Pn
h=1 I{0} (wh)πh hence j strictly prefers w over z since dj < di. Sim-

ilarly, all remaining players besides i previously approving z approve w. By the strict

preference of j and step (1) h can successfully propose an allocation with a smaller cost than

that allocated under z ,which contradicts optimality of z.
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(8) If i proposes z with zj = 0 and j proposes w with wi = 0, ed (w) ≥ ed (z). LetPn
l=1 I{0} (wl) πl = eπ. We have Dj = P

h6=j,wh>d(w)wi + (b− δeπ) ed (w) for some b players.
Then, by a similar argument to that in step (5)Di ≤

P
h6=j,wh>d(w)wi+ (b− δ (eπ − πi + πj)) ed (w)

⇐⇒ Di −Dj ≤ δ (πi − πj) ed (w). But by step (5) we have δ (πi − πj) ed (z) ≤ Di −Dj and
the claim follows.

We are now ready to establish a contradiction emanating from the working hypoth-

esis di > dj. We distinguish two cases. Case 1: µij = 1. Step (6) guarantees we

can represent both di, dj by equation (34). We then have 1 − δ
³
πi +

P
h6=i πhµhi

´
>

1 − δ
³
πj +

P
h6=j πhµhj

´
by step (7), and the fact that µij = 1. Also, from πj < πi,

step (7), and the fact that µij = 1, we obtain −Ph6=i πh (1− µhi)
R
mi
h (dz) δ

2πi ed (z) <
−Ph6=j πh (1− µhj)

R
mj
h (dz) δ

2πj ed (z). Thus, using the above and equation (34) we have
di > dj =⇒ si − δπi (Di + di) > sj − δπj (Dj + dj) ⇐⇒ πi (Di + di) < πj (Dj + dj) which

is false by step (4) and the fact that πj < πi. Case 2: µij < 1. From step (7) and the

fact that µji = 0 we have 1 − δ
P

h6=i πhµhi > 1 − δ
P

h6=j πhµhj. Also, from πj < πi,

step (7), and the fact that µji = 0, we obtain −Ph6=i,j πh (1− µhi)
R
mi
h (dz) δ

2πi ed (z) <
−Ph6=j,i πh (1− µhj)

R
mj
h (dz) δ

2πj ed (z). Finally, we have −πj (1− µji) R mi
j (dz) δ

2πi ed (z)
≤ −πi (1− µij)

R
mj
i (dz) δ

2πj ed (z) ⇐⇒ R
mi
j (dz)

ed (z) ≥ (1− µij)
R
mj
i (dz)

ed (z) which is
true from step (8). From the above and using equation (33) we get that di > dj =⇒

si − δπiDi > sj − δπjDj ⇐⇒ πiDi < πjDj which is false by step (5).

5. CONCLUSIONS

We analyzed a dynamic majority rule bargaining game over a distributive policy space

with an endogenous reversion point. Although subgame perfect equilibrium may fail to exist
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for games in the class we analyze, we established existence of a (refined) Markov Perfect

Nash equilibrium. The equilibrium produces a number of novel and in many instances

counter-intuitive findings.

These results do not depend on the way we resolve indifference at the critical voting

period when alternatives that allocate zero to more than a majority of legislators prevail

for the first time. As we point out in Remark 3 or in the proof of proposition 2, legislators

that vote yes in these cases and receive zero strictly prefer the proposal over the status quo

despite the fact that their allocation is reduced because they can extract more of the dollar

in subsequent periods.

The reader may object that less counter-intuitive legislative behavior can prevail by

simply removing the restriction to Markovian strategies. We point out, though, that much of

the significance of our findings emanates from the fact that they differ from results in other

studies that impose the same or similar equilibrium restrictions. This discrepancy exists

both when we compare these findings with the intuition emerging from related analyses

that assume a different policy space but the same institutions (e.g. Baron, 1996, Ferejohn,

McKelvey, Packel, 1984, Baron and Herron, 1999), as well as when we consider the same

policy domain but different institutional arrangements (Baron and Ferejohn, 1989, Eraslan,

2002).

The first comparison suggests that the nature of legislative interaction is not indepen-

dent of the underlying policy space. The second comparison casts doubt on our ability to

draw valid conclusions from models of legislative politics that assume interaction ceases after

a decision is reached.

In sum, we answer some and open even more questions on the dynamics of legislative
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interaction. One open question is the general existence of equilibrium in such dynamic

bargaining games. The results in Kalandrakis, 2002, suggest that general existence may not

obtain with a continuous space of decisions without an expansion of the state space. It is

also possible that additional MPNESUV with different payoff implications may exist in the

game we analyze. We deem it more likely that a stable outcome may be supported in such

an equilibrium for sufficiently high degrees of risk aversion, or if probabilities of recognition

are sufficiently non-symmetric. Finally, it is worth exploring the effect of more competitive

agenda formation processes within each period, such as a version of the open rule considered

by Baron and Ferejohn, 1989.
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APPENDIX

In this Appendix we prove the main result (Proposition 1).

Proof of Proposition 1. First note that if u (x)−x is small then conditions (30) and

(31) are satisfied. Hence, the proposal strategies analyzed in sections (3.i-3.ii) are consistent

with proposition 1 and specify the expected utility functions in (19) for all s ∈ ∆θ≥κ. Now

consider s ∈ ∆θ<κ; part 1 requires that proposals only belong in ∆θ≥κ. Informally, then, our

proof strategy proceeds as follows: consistent with the above requirement we force players to

propose alternatives in ∆θ≥κ when s ∈ ∆θ<κ. Since we have derived utilities for outcomes in

∆θ≥κ, then for any conjecture of such play we can measure the expected utility of legislators

if they reject these proposals and keep the status quo for only one more period, whence we

can analyze optimal voting strategies. Thus we proceed to establish (A) that this restricted

game that is afterwards played as described in section 3, has a fixed point in proposal and

voting strategies. Then we establish that (B) forcing players to propose only in ∆θ≥κ has
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no consequence, i.e. the fixed point in (A) is such that proposers indeed optimize by only

considering proposals in ∆θ≥κ.

We show (A) by applying Glicksberg’s (1952) theorem for every s ∈ ∆θ<κ. Verifying the

conditions of the theorem in our case differs in a number of ways from related literature (for

example Banks and Duggan, 2000, 2001). First, for particular conjectures about proposal

strategies in Φ, some proposers may not wish to propose anything in∆θ≥κ over the status quo.

Still, we require that they optimize among alternatives in ∆θ≥κ and at least a bare minority

of κ other players prefer their proposal. The fact that we ignore the vote of the proposer

has no effect at (or near) the fixed point as we show in (B). Yet, as we show in Lemma 5,

showing that the proposer can find κ other coalition partners is not straightforward due to the

nature of the utilities in (19). Hence some restrictions on the applicability of the equilibrium

emerge from this requirement. Also, although the feasible set from which the proposer

optimizes is upper-hemicontinuous, it fails lower-hemicontinuity and so the typical strategy

of establishing upper-hemicontinuity of the best response correspondence by invoking the

theorem of the Maximum does not work. Instead, we prove upper-hemicontinuity of proposal

strategies directly. This accounts for the additional restrictions on the parameter range in

addition to those emanating from Lemma 5.

More formally, consider any bµ ∈ Φ ≡ [℘ (∆θ≥κ)]
n with coordinate bµi [s] corresponding

to the proposal strategy of individual i; if these strategies involve proposals that are accepted,

then the expected utility of player i in the event the proposal is rejected is given by bUi (bµ, s)
≡ u (si)+ δ

Pn
j=1 πj

R
Ui (z) bµj [dz | s], where Ui (z) are as in (19). Define the acceptance

set of player i as bAi (bµ, s) = n
x ∈ ∆θ≥κ | Ui (x) ≥ bUi (bµ, s)o. Also define the coalitional

winset of s for player i given bµ as the finite union of finite intersections of individual
44



acceptance sets of players other than i over all coalitions Γi ≡ {C ⊂ N − i | |C| = κ}, i.e.
cWi (bµ, s) ≡ ∪C∈Γi h∩j∈C bAj (bµ, s)i.

Define the correspondence Mi (bµ, s) ≡ argmaxnUi (x) | x ∈cWi (bµ, s)o , i ∈ N , and let
M (bµ, s) ≡ M1 (bµ, s) × ... ×Mn (bµ, s). Let Bi (bµ, s) = ℘ (Mi (bµ, s)). As discussed above, we
wish to show that (A) the correspondence B : Φ³ Φ defined by B (bµ, s) ≡ B1 (bµ, s)× ...×
Bn (bµ, s) has a fixed point bµ∗ = B (bµ∗, s), and that (B) bµ∗ is such that for all y ∈ ∆θ<κ

and for all C ⊂ N , |C| = m there exists x ∈ ∆θ≥κ such that x ∈ ∩j∈C bAj (bµ∗,y). Then,
proposal strategies bµ∗ and those specified in sections (3.i-3.ii), determine utility functions
and acceptance sets that constitute MPNESUV. This is because (B) implies that optimal

proposals can only exist in ∆θ≥κ, so that bµ∗ and strategies specified in sections (3.i-3.ii) are
optimal over the entire winset W (s). We show (A) in a series of steps:

(1) cWi (bµ, s) is non-empty for all i ∈ N . We establish this using two lemmas:
Lemma 4 For the utilities in (19) and any coalition C, with |C| > m, andPi∈C πi = 1−πe

max

(X
i∈C

[Ui (x)− vi] | x ∈ ∆θ≥κ,πi∈C

)
=

= (1− πe) [δu (1− w)− (1 + δ)] +m
m

m− δ
u

µ
1

m

¶
(35)

with w = u−1
µ

m

m− δ
u

µ
1

m

¶¶
, and for |C| = m

max

(X
i∈C

[Ui (x)− vi] | x ∈ ∆θ≥κ,πi∈C

)
=

= m
m

m− δπe
u

µ
1

m

¶
− (1− πe)(36)

Proof. From standard application of the Kuhn-Tucker conditions and for any δ, πi,
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i ∈ C we obtain

max

(X
i∈C

[Ui (x)− vi] | x ∈ ∆θ>κ

)
= κu

µ
1

κ

¶
− (1− πe)

and the maximum for x ∈ ∆θ>κ is attained for x ∈ ∆κ+1. Now consider the maximum ofP
i∈C [Ui (x)− vi] for x ∈ ∆κ, holding δ,πi, constant. Assume w.l.o.g. that C = {n, ..., l} ,

1 ≤ l ≤ κ. Assuming that the maximum is attained when positive amounts are allo-

cated among members in C only, let i > j =⇒ xi ≥ xj, π0 =
Pκ

i=l πi, and eπ = Pκ
i=1 πi

so that the objective function can be written as
P

i∈C [Ui (x)− vi] =
Pn

i=l [Ui (x)− vi] =

δπ0u (1− zb (x))+bu (zb (x))+
Pn

i=m+b u (xi)−(1− πe)−δπ0 when u (xm+b−1) < u (zb (x)) ≤

u (xm+b). While
Pn

i=1 [Ui (x)− vi] is continuous by lemma 1 it is not differentiable at points

such that u (zb (s)) = u (sm+b); yet, for each b = 1, ...,m we can maximize:

max
{xm,...,xn}

"
δπ0u (1− zb (x)) + bu (zb (x)) +

nX
i=m+b

u (xi)− (1− πe)− δπ0

#
s.t.

u (zb (x)) =

Pm+b−1
j=m u (xj)

b− δeπ
u (zb (x)) ≤ u (xm+b)

nX
i=m

xi = 1

xj+1 ≥ xj, j = m, ..., n− 1

xj ≥ 0, j = m, ..., n

It is straightforward to show that the maximum for the above program is attained only if

xi =
1− S
m− b, i = m + b, ..., n − 1 and xj = S

b
j = m, ...,m + b − 1, and S ≤ Sb where Sb

is defined in lemma 2. Else, we can increase
Pn

i=m+b u (xi) by appropriate re-allocation of

amounts xj, xi while keeping u (zb (x)) (and δπ0u (1− zb (x))) constant. Thus, from lemma

46



2 we have

bu

µ
S

b

¶
b− δeπ ≤ u

µ
1− S
m− b

¶
,
S

b
≤ 1− S
m− b, S ≤ Sb and we can equivalently write the

above program (omitting the constant terms) as:

max
{S}

δπ0u
1− u−1

bu
µ
S

b

¶
b− δeπ


+ bbu

µ
S

b

¶
b− δeπ + (m− b)u

µ
1− S
m− b

¶ s.t.

S ≥ 0

S ≤ Sb

Formulating the Langrangian we obtain:

L = δπ0u

1− u−1
bu

µ
S

b

¶
b− δeπ


+ bbu

µ
S

b

¶
b− δeπ +

(m− b)u
µ
1− S
m− b

¶
− γ (S − Sb)− λ (−S)

and using the fact that
∂u−1 (y)

∂y
=

1

u0 (u−1 (y))
the first order conditions are:

∂L

∂S
= −δπ0u0

1− u−1
bu

µ
S

b

¶
b− δeπ


u0

u−1
bu

µ
S

b

¶
b− δeπ



−1
u0
µ
S

b

¶
b− δeπ

+
b

b− δeπu0
µ
S

b

¶
− u0

µ
1− S
m− b

¶
− γ + λ = 0

γ
∂L

∂γ
= λ

∂L

∂λ
= 0

γ ≥ 0

Setting S = Sb, λ = 0, we get γ =
1

(b− δeπ)
b− δπ0

u0
µ
1− 1− Sb

m− b
¶

u0
µ
1− Sb
m− b

¶
u0µSbb

¶
−u0

µ
1− Sb
m− b

¶

where use is made of the fact that
b

b− δeπu
µ
Sb
b

¶
= u

µ
1− Sb
m− b

¶
. It remains to verify that
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γ ≥ 0; since u00 < 0 and Sb
b
<
1− Sb
m− b it suffices to show

1

(b− δeπ)
b− δπ0

u0
µ
1− 1− Sb

m− b
¶

u0
µ
1− Sb
m− b

¶
 ≥

1 ⇐⇒ π0u
0
µ
1− 1− Sb

m− b
¶
≤ eπu0µ1− Sb

m− b
¶
which is true since u00 < 0,

1− Sb
m− b ≤

1

2
by (23)

and (31), and π0 ≤ eπ. Call the allocation that corresponds to the above solution xb. By
(13) xq is a feasible allocation for the corresponding maximization when b = q + 1, so thatPn

i=l [Ui (xq)− vi] <
Pn

i=l [Ui (xq+1)− vi]. Specifically
Pn

i=l Ui (x1) > κu

µ
1

κ

¶
− (1− πe),

and max {Pn
i=l [Ui (x)− vi] | x ∈ ∆, x1 = ... = xκ = 0} =

Pn
i=l [Ui (xm)− vi] where

(37)
nX
i=l

[Ui (xm)− vi] = [δπ0u (1− zm (xm)) +mu (zm (xm))− (1− πe)− δπ0]

If l = m, then π0 = 0 and (36) follows. Now consider l < m; we have

∂
Pn

i=l [Ui (xm)− vi]
∂π0

= δu (1− zm (xm))+

δ

m− δπ0
u0 (1− zm (xm))
u0 (zm (xm))

m− δ (π0 + πe)
u (zm (xm))− δ > 0

so (37) is increasing in π0, hence the maximum is attained for π0 = 1 − πe for which (37)

reduces to (35).

We have derived the above assuming no i /∈ C receive a positive amount, and we

shall now show this is a restriction of no consequence. For |C| > m suppose there exists

y ∈ ∆θ≥κ with yi > 0, i /∈ C such that
P

i∈C [Ui (y)− vi] > (1− πe) [δu (1− w)− (1 + δ)] +

m
m

m− δ
u

µ
1

m

¶
. From equation (24) as it applies to w we infer

P
i/∈C [Ui (y)− vi] ≥

δπeu (1− w)− (1 + δ)πe. Then, y is such that
P

i∈N [Ui (y)− vi] > [δu (1− w)− (1 + δ)] +

m
m

m− δ
u

µ
1

m

¶
which is impossible since max

x

P
i∈N [Ui (x)− vi] = [δu (1− w)− (1 + δ)] +

m
m

m− δ
u

µ
1

m

¶
. For |C| = m, let one legislator not in C receive a positive amount.
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From (19) the legislator in C with zero allocation contributes a non-positive amount in

the sum, and similar arguments as above show that the maximum amount attainable is

κ
m

m− δ
u

µ
1

m

¶
− (1− πe) < m

m

m− δπe
u

µ
1

m

¶
− (1− πe)⇐⇒ κ

(m− δ)
<

m

(m− δπe)
which

is true for all δ < 1. Obviously sum is even smaller if two or more legislators outside C

receive positive funds.

The second lemma is:

Lemma 5 cWi (bµ, s) is non-empty for all bµ ∈ Φ if (a) u (x) = x and πi ≤ m− δ

δm
for all

i ∈ N , or (b) if u (x) is sufficiently close to risk neutrality and individual probabilities of

recognition are sufficiently smaller than
m− δ

δm
.

Proof. Define the demand of legislator i as bdi ≡ maxnbUi (bµ, s)− δvi, 0
o
. Although

for any given pair (bµ, s) it is possible that bdi > 1 for some i, it suffices to show that there
exists a coalition C, with |C| = m and

P
j∈C u

−1
³bdj´ ≤ 1. If this is the case, thenP

j∈C\{i} u
−1
³bdj´ ≤ 1, for all j ∈ C. The latter condition ensures that we can allocate

zj = u−1
³bdj´ to κ of the legislators in C other than the proposer i (possibly in C) and

zero to the rest. The corresponding allocation z is such that Uj (z) ≥ bUj (bµ, s) for all these
κ legislators in C\ {i} as can be ascertained from (19), hence z ∈ cWi (bµ, s). To show thatP

j∈C u
−1
³bdj´ ≤ 1 is true for some such coalition C, without loss of generality re-label

legislators so that i > j =⇒ bdi > bdj. Let l = argminni | bdi > 0o. Obviously proof follows
trivially if l > m. In the remaining cases we need establish

Pm
i=l u

−1
³bdi´ ≤ 1. We will do so

by contradiction. As in Lemma 4 let πe =
Pl−1

i=1 πi. Suppose
Pm

i=l u
−1
³bdi´ = A ≥ 1. Then

we have

(1)
Pn

i=l

hbUi (bµ, s)− δvi

i
≤ (n− l + 1)u ¡ 1

n−l+1
¢
+ δmax {Pn

i=l [Ui (x)− vi] | x ∈ ∆θ≥κ,πi=l,...,n}.

We have bUi (bµ, s)−δvi = u (si)+ δ
hPn

j=1 πj
R
Ui (y) dbµj [y | s]− vii and additive separability
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of bUi (bµ, s) implies that for any given bµ, supnhbUi (bµ, s)− δvi
i
| bµ ∈ [℘ (∆θ≥κ)]

n , s ∈ ∆θ<κ

o
is

attained for s such that exactly (n− l + 1) legislators receive 1
n−l+1 each, which accounts for

the first part of the sum, (n− l + 1)u ¡ 1
n−l+1

¢
. The remaining follows since it must be thatPn

i=l

hPn
j=1 πj

R
Ui (y) dbµj [y | s]− vii ≤ max {Pn

i=l [Ui (x)− vi] | x ∈ ∆θ≥κ,πi, i = l, ..., n}.

(2) min
nPn

i=l
bdi |Pm

i=l u
−1
³bdi´ = A,A ≥ 1o = (n− l + 1)u ¡ 1

m−l+1
¢
14. We have

min
{A,dl,...,dn}

nX
i=l

bdi
bdj ≤ bdj+1, j = l, ..., n− 1

mX
i=l

u−1
³bdi´ = A

A ≥ 1

bdm ≤ 1
bdl ≥ 0, j = l, ...,m

Formulating the Langrangian we get

L =
nX
i=l

bdi − n−1X
j=l

ζj

³bdj+1 − bdj´− λ

Ã
mX
i=l

u−1
³bdi´−A!

− β (A− 1)− η
³bdl´− ξ

³
1− bdm´

14The inverses are well defined since bdm < 1 as we prove later.
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using the fact that
∂u−1 (y)

∂y
=

1

u0 (u−1 (y))
the minimization conditions are

∂L

∂ bdl = 1 + ζl − λ
1

u0
³
u−1

³bdl´´ − η = 0

∂L

∂ bdj = 1− ζj−1 + ζj − λ
1

u0
³
u−1

³bdj´´ = 0, j = l + 1, ...,m− 1
∂L

∂ bdm = 1− ζm−1 + ζm − λ
1

u0
³
u−1

³bdm´´ + ξ = 0

∂L

∂ bdj = 1− ζj−1 + ζj = 0, j = m+ 1, ..., n

∂L

∂ bdn = 1− ζn−1 = 0

∂L

∂A
= λ− β = 0

ζj
∂L

∂ζj
= β

∂L

∂β
= η

∂L

∂η
= ξ

∂L

∂ξ
= 0

ζj,β, η, ξ ≥ 0

For solution A = 1, bdj = u ¡ 1
m−l+1

¢
, j = l, ..., n, we have ζj = (n− j) > 0, j = m, ..., n −

1, ξ = 0, η = 0, ζm − j = (n−m)
µ
1− h

(m− l + 1)
¶
> 0, h = 1, ...,m − l, λ = β = λ =

(n− l + 1)
(m− l + 1)u

0 ¡ 1
m−l+1

¢
> 0 so that the minimum is (n− l + 1)u ¡ 1

m−l+1
¢
.

(3) (n− l + 1)u ¡ 1
m−l+1

¢ ≤ (n− l)u ¡ 1
m−l
¢
. For any l < m, an allocation with bdl =

0, bdl+i = u ¡ 1
m−l
¢
for i = 1, ..., n is also feasible but not optimal.

(4) (n− l + 1)u ¡ 1
n−l+1

¢ ≥ (n− l)u ¡ 1
n−l
¢
. Same argument as in step (4) for the max-
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imization program

max
{xl,...,xn}

nX
i=l

u (xi)

nX
i=l

xi = 1

xi ≥ 0

We are now ready to show the contradiction emanating from the working hypothesisPm
i=l u

−1
³bdi´ = A ≥ 1. For every l we must have the sum of players’ demands larger than

the minimum possible, i.e.
Pn

i=l

hbUi (bµ, s)− δvi
i
≥ (n− l + 1)u ¡ 1

m+1−l
¢
. First, consider

l = m, in which case after substituting and using steps (1), (2), and (36) we obtain

nX
i=m

hbUi (bµ, s)− δvi

i
> m⇐⇒

mu

µ
1

m

¶
+ δ

·
m

m

m− δπe
u

µ
1

m

¶
− (1− πe)

¸
> m⇐⇒

u

µ
1

m

¶
>
m+ δ (1− πe)

m
=⇒ u

µ
1

m

¶
≥ κ

n

which is false for sufficiently mild degrees of risk aversion. Similarly, for l < m due to steps

(1), (2), and equation (35) of Lemma 4 we have

(n− l + 1)u
µ

1

n− l + 1
¶
+ δ

·
(1− πe) [δu (1− w)− (1 + δ)] +m

m

m− δ
u

µ
1

m

¶¸
> (n− l + 1)u

µ
1

m+ 1− l
¶

Using steps (3) and (4) and the fact that πe = 0 if l = 1 we obtain two relevant versions: for

l = 2

(38)

(n− 1)u
µ

1

n− 1
¶
+ δ

·
(1− πe) [δu (1− w)− (1 + δ)] +m

m

m− δ
u

µ
1

m

¶¸
> (n− 1)u

µ
1

κ

¶
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and for l = 1

(39) nu

µ
1

n

¶
+ [δu (1− w)− (1 + δ)] +m

m

m− δ
u

µ
1

m

¶
> nu

µ
1

m

¶
In the case of risk neutrality we get πe = π1 >

m− δ

δm
from (38) and 1 >

n

m
from (39).

The latter implies a contradiction for l = 1, while πi ≤ m− δ

δm
ensures a contradiction for

l = 2, ...,κ. Notice though that if each πi is sufficiently smaller than
m− δ

δm
then both

inequalities are strict, hence result continues to hold if players are mildly risk averse such

that u (x)− x < ε, for some ε > 0.

With the above we established step (1).

(2) cWi (bµ, s) is compact. This follows from the continuity of Ui (x ∈ ∆θ≥κ) (Lemma 1)

and the compactness of ∆θ≥κ.

(3) bAi (bµ, s) has closed graph for all i ∈ N . We haveGr bAi = n(bµ,x) ∈ Φ×∆θ≥κ | x ∈ bAi (bµ, s)o.
If Gr bAi = ∅ then it is closed. Otherwise, suppose by way of contradiction that there exists
a sequence

¡bµk,xk¢ ∈ Gr bAi such that ¡bµk,xk¢ −→ (bµ,x) /∈ Gr bAi. Since hUi (x)− bUi (bµ, s)i
is jointly continuous,

h
Ui
¡
xk
¢− bUi ¡bµk, s¢i −→ h

Ui (x)− bUi (bµ, s)i. But then x ∈ bAi (bµ, s),
since otherwise

h
Ui
¡
xk
¢− bUi ¡bµk, s¢i ≥ 0 for all k and hUi (x)− bUi (bµ, s)i < 0.

(4) cWi (bµ, s) has closed graph. Finite unions and intersections of closed sets are closed.
(5) cWi (bµ, s) is upper-hemicontinuous. The Closed Graph Theorem (Aliprantis and

Border, 16.12, p. 529) applies.

The following two steps ((6) and (7)) are used in order to establish that proposers’

maximization is equivalent to maximizing the amount of funds they receive. This is then

used to establish upper-hemicontinuity of proposers’ best responses in (8).

(6) If
hbUj (bµ, s)− δvj

i
≤ 0 for all j ∈ C, |C| ≤ κ, then for all i 6= j ∈ C, y ∈

argmax
n
Ui (z) | z ∈ cWi (bµ, s)o =⇒ y ∈ ∆κ+|C|. First consider |C| = 1. Suppose claim
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does not hold; then i allocates a positive amount to κ other legislators and herself (since

she optimizes). Without loss of generality, denote this allocation x ∈ ∆κ with 0 < xm ≤

xm+1 ≤ ... ≤ xn, and let u (xm+b−1) < u (zb (x)) ≤ u (xm+b). It suffices to show thatPκ+b
i=m xi > (b− 1) zb (x), since from (19) we have that allocating zb (x) to b − 1 (excluding

say h) of b legislators m, ...,m + b − 1, by non-decreasing remaining amounts xm+b, ..., xn,

and allocating the surplus for herself, i obtains the support of all legislators that previously

supported her except for h, as well as the support of j so that she maintains the support

of κ others (from the fact that i optimizes we deduce that j cannot be one of legislators

m + b, ..., n hence at most j = h and above hold; if b = 1 and i = m any other legislator

can be excluded with the same effect). In the case of risk neutrality we have
Pκ+b

i=m xi >

(b− 1) zb (x) =⇒
Pκ+b

i=m xi > (b− 1)
Pκ+b

i=m xi
b− δeπ ⇐⇒ δeπ < 1 which is true for every π ∈ ∆,

δ < 1. Since the inequality is strict, same holds if u (x)− x < ε for sufficiently small ε. But

a fortiori a proposal x ∈ ∆m is not optimal when |C| > 1. Now, for proposals in ∆θ>m

maximization of proposer’s utility is equivalent to minimization of the amount allocated to

the remaining legislators, so only legislators with positive demand receive a positive amount.

(7) If
hbUj (bµ, s)− δvj

i
≥ 0 for all j ∈ N−{i} , then y ∈ argmax

n
Ui (z) | z ∈cWi (bµ, s)o

=⇒ Ui (y) >
m

m− δ (1− πi)
u

µ
1

m

¶
+ δvi. Consider the case of risk neutrality first. It

suffices to show that there exist κ other legislators, say in coalition C ∈ Γi, such thatP
j∈C max

nbUj (bµ, s)− δvj
o
≤ 1− 1

m− δ (1− πi)
. If so, then player i can allocate an amount

equal to
nbUj (bµ, s)− δvj

o
to each player in C and retain an amount

1

m− δ (1− πi)
for her-

self. This allocation obviously belongs incWi (bµ, s) and ensures utility 1

m− δ (1− πi)
+δvi for

player i by (24) of lemma 2. From equation (35) of lemma 4 and since 2

µ
1− 1

m− δ (1− πi)

¶
>

2

µ
1− 1

m− δ

¶
it suffices to show that 1+δ

·
(1− πi)

·
δ

µ
1− 1

m− δ

¶
− (1 + δ)

¸
+

m

m− δ

¸
≤
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2

µ
1− 1

m− δ

¶
so that result holds for πi ≤ m− δ − 2

δm
, for all i. Since it cannot be that

πi <
1

n
for all i, we must have

m− δ − 2
δm

≥ 1

n
which is equivalent to δ ≤ 5

8
if m = 3 and is

strictly true for m > 3. For mild degrees of risk aversion the same holds since the inequality

above is strict.

(8) Mi (bµ, s) is upper-hemicontinuous. Non-emptiness and upper-hemicontinuity of
cWi (bµ, s) ensures that the maximum in Mi (bµ, s) = argmax

n
Ui (z) | z ∈cWi (bµ, s)o is well

defined and it suffices to show thatMi (bµ, s) has closed graph. Suppose not; then there exists
a sequence

¡bµk,xk¢ ∈ GrMi = {(bµ,x) ∈ Φ×∆θ≥κ | x ∈Mi (bµ, s)} such that ¡bµk,xk¢ −→
(bµ,x) /∈ GrMi. Upper-hemicontinuity of cWi (bµ, s) guarantees (bµ,x) ∈ GrWi. Then from the

fact that (bµ,x) /∈ GrMi we deduce there exists y ∈ argmax
n
Ui (z) | z ∈cWi (bµ, s)o such that

Ui (y)−Ui (x) = η > 0. Optimality of y ensures y ∈ argmax
n
Ui (z) | Uj (z) ≥ bUj (bµ, s) , j ∈ C 0o

for some C 0 ∈ Γi. Since i optimizes by allocating a positive amount to herself (proposals g

with gi = 0 are such that Ui (g) ≤ δvi whereas by Lemma 5 she can obtain strictly higher util-

ity), at most κ other legislators receive positive funds and 1−Pj∈C0 yj = yi > 0. In fact, steps

(6) and (7), as well as part (c) of Lemma 1 ensure that legislator i optimizes by maximizing

the amount of funds she allocates to herself, i.e. by minimizing
P

j∈C0 yj. By the continuity ofbU,U there exists large enough k > k such that ¯̄̄ bUj ¡bµk, s¢− bUj (bµ, s)¯̄̄ = ηkj < min
n η

2κ
,
yi
κ

o
for all j ∈ C 0 and ¯̄Ui ¡xk¢− Ui (x)¯̄ < η

2
. Then for each k > k it is feasible to construct

yk ∈ cWi

¡bµk, s¢ with ykj = yj + ηkj −→ yj for all j ∈ C 0 and yki = yi −
Pk

j∈C0 η
k
j so that¯̄

Ui
¡
yk
¢− Ui (y)¯̄ < η

2
and

¯̄
Ui
¡
xk
¢− Ui (x)¯̄ < η

2
. Then Ui

¡
yk
¢
> Ui

¡
xk
¢
which contra-

dicts
¡bµk,xk¢ ∈ GrMi. The above hold for mild risk aversion as well.

(9) B has a fixed point bµ∗ = B (bµ∗, s). B is non-empty, upper-hemcontinuous, compact,
and convex valued and so has a fixed point by Glicksberg (1952).
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This completes the proof of (A) and it remains to show (B). For any y ∈ ∆θ<κ, let

U∗i (y) ≡ bUi (bµ∗,y), where bµ∗ is — a — fixed point for s = y. We first claim:
(10) U∗j (y)−δvj < 1 for all j ∈ N . Suppose not. Then no i 6= j optimizes by allocating

a positive amount to j. Thus j’s utility U∗j (y) must be smaller than u (yj)+δ [πju (1) + δvj] =

u (yj) + δvj, and we have a contradiction since u (yj) < 1.

For the next step define the demand in the usual way, i.e. d∗j (y) = max
©
U∗j (y)− δvj, 0

ª
.

(11) If U∗i (y)−δvi < 0, for k ≥ 1 legislators, then U∗i (y) ≥ u (yi)+δ [πiu (1−D) + δvi],

where D = min
nP

j∈C u
−1 ¡d∗j (y)¢ | C ∈ Γi

o
, with the inequality possibly strict only if

k = 1. By step (6) all legislators other than i propose alternatives in ∆θ>κ and never

allocate a positive amount to i. Thus, i receives a positive amount only when she proposes.

If k > 1, again by steps (6), i maximizes by minimizing the amount allocated to κ − 1

other players, whereas the same applies by (7) if k = 1. In the latter case, i can obtain

higher utility than u (1−D) when she proposes as the demand d of another legislator can

be satisfied by allocating x with d > u (x) > 0 such that d =
u (x)

1− δ
¡P

i∈C0 πi
¢ , where C 0 is

the set of members that receive zero.

We can now prove (B) i.e. that bµ∗ is such that for all y ∈ ∆θ<κ and for all C ⊂ N ,

|C| = m there exists x ∈ ∆θ≥κ such that x ∈ ∩j∈C bAj (bµ∗,y). Without loss of general-
ity assume i > j =⇒ U∗i (y) − δvi ≥ U∗j (y) − δvj. Consider the case of risk neutrality

first. Let l = min {i ∈ N | U∗i (y)− δvi > 0}. Assuming l ≤ m15 it suffices to show that

for every coalition C ⊂ {l, ..., n} with |C| = m, h = min {i ∈ C} we have Pi∈C d
∗
i (y) <

1 + δ
¡P

i/∈C πi
¢
d∗h (y). This is because an alternative in ∆m that allocates amount equal

to their demand to each of the legislators in C\ {h} as well as an amount x > 0 such that
15Result holds a fortiori if l > m.
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d∗h (y) =
x

1− δ
¡P

i/∈C πi
¢ to h, is such that the demand of allm is satisfied. Suppose the con-

trary, i.e.
P

i∈C d
∗
i (y) ≥ 1+δ

¡P
i/∈C πi

¢
d∗h (y). Consider two cases: For l > 1, from step (11)

we have
Pl−1

i=1 [U
∗
i (y)− δvi] ≥

Pl−1
i=1 u (yi) − δ

³Pl−1
i=1 πi

´
D. Since

Pn
i=1 [U

∗
i (y)− δvi] = 1,

we must then have
Pl−1

i=1 [U
∗
i (y)− δvi] +

P
i∈C d

∗
i (y) < 1 ⇒

Pl−1
i=1 u (yi)− δ

³Pl−1
i=1 πi

´
D+

δ
¡P

i/∈C πi
¢
d∗h (y) < 0 =⇒ ¡P

i/∈C πi
¢
d∗h (y) <

³Pl−1
i=1 πi

´
D, which is false by the defini-

tion of D, and the fact that
¡P

i/∈C πi
¢ ≥ ³Pl−1

i=1 πi
´
, and so is the original assumptionP

i∈C d
∗
i (y) ≥ 1 + δ

¡P
i/∈C πi

¢
d∗h (y). For l = 1 from

Pn
i=1 [U

∗
i (y)− δvi] = 1 we obtain¡P

i/∈C πi
¢
d∗h (y) < 0, again a contradiction. If risk neutrality is small enough [u (x)−x < ε],

we have
Pn

i=1 [U
∗
i (y)− δvi] < 1 + nε + δmε + δ22ε [since absorption in ∆2κ occurs in at

least three periods]. Since the inequalities above are strict (and hold with wider margins if

probabilities of recognition are more symmetric) (B) holds for small enough ε as well.
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TABLE 1: Example of Conjectured Equilibrium Path (n=5)  
 
 

Period 
Legislator 

t t+1 t+2 t+3 t+4 t+5 

1 x1 y1 0 0 0 0 

2 x2 y2 0 1 0 0 

3 x3 y3 z 0 0 1 

4 x4 0 0 0 0 0 

5 x5 0 1-z 0 1 0 

 
key: Proposers form minimum winning coalitions and legislators that have zero 
under status quo vote yes if proposer allocates them zero. In at most three 
periods proposer extracts the whole dollar. In the example above, proposer in 
period t+1 is any one of legislators 1, 2, or 3. In period t+2 proposer is legislator 5 
and allocates an amount to 3 to form a majority with 3, and 4. Proposers in 
subsequent periods are 2, 5, and 3 respectively.  



 59

FIGURE 1: Optimal Proposal When κ∈∆s  

 
(a) Status quo allocation 

 

 

 

 
  1     2      .    .    .    1κ −   κ     m  m+1 m+2    .    .    .     n-1   n    
 
(b) Equilibrium demands 

 
 
 
 
 
 
 
 
 
 
  1     2      .    .    .    1κ −   κ     m  m+1 m+2    .    .    .     n-1   n    
key: If legislator m is always chosen as coalition partner by 1, …, κ , she demands 
an amount that exceeds the allocation of legislator m+1. In equilibrium, 
legislators m and m+1 are chosen with positive probability and demand equal 
amounts. Legislators m+2, …, n demand their allocation under status quo. 
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FIGURE 2: Necessary Equilibrium Conditions & Risk Aversion 
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key: If ( )1
ˆ

m u
m mδπ−

> ( )1
2

u , there exist states κ∈∆s  for which a proposer with 

zero share of the dollar is better off allocating 1
m

 to m legislators including 

herself, as opposed to allocating a positive amount to a single legislator with 
positive share of the dollar under the state, s. 
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FIGURE 3: Equilibrium Induced Markov Process 
 
 

                                                                               0,..., 1κ−∆                                                  

 
 

 
                                                                                       
 
                                                          
                         κ∆                                                ,..., 3m n−∆  

                                               π                    
 

                                (1-π )                         
                                         1                                                   
             
                                                     1                        
                         1n−∆                                             2n−∆  
 

                          Irreducible Absorbing Set 
 

key: From any initial allocation, outcomes are absorbed in the set where a single 
player (the proposer) obtains the whole dollar in at most three periods. 




