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INFORMATION SECURITY AND MULTISENSOR DATA
PROCESSING

Thisissue of Information & Security is dedicated to one of the most promising areas of contemporary
research and development — Multisensor Data Fusion (M SDF). The research community has already
adopted common M SDF models and terminology. System devel opers have reached consensus on
main engineering directions, and many commercial off-the shelf data fusion tools are now in use.
Why are we focusing our attention on something so closely interrelated with the human cognition
practice, and not self-evidently connected with the problems of information security?

Asitiswell known, the main amount of problems concerning information security arise from the area
of signal, data and knowledge processing practice. The emergence of the information society has been
inevitably followed by arapid increase in the implementation of information processing systems. The
ascending flood of equipment and sophisticated information systems applications has produced a lack
of security for al levels of data processing. The information vulnerability of command and control
(C?) systems became of prime importance. Many system devel opers started to complain about the
insufficient knowledge and expertise. Numerous conferences and symposia on this theme are
dedicated to seemingly an endless discussion. But from our point of view, these events are not focused
on the exact issue. What is generally neglected is that the essence of all fundamental ideas about
information operations and information warfare is the disruption (the protection) of information
processing in opposing Command, Control, Communications, Computing and Intelligence (C#)
systems. The core of the information attacks is to produce attrition in the adverse Observe-Orient-
Decision-Act (OODA) cycle by affecting the performance of C4 systems characteristics. The
information processing, and more precisely - the multisensor data fusion process, became the "center
of gravity" of information operations.

There are two ways to protect our own C#4 system from adversary invasion. Thefirst oneisto shield
the information processing hardware and software, giving all responsibility to the "fire-walls'. The
second isto utilize robust data processing algorithms, providing a new level of sustainability and
survivability of the whole system. The first way has been widely discussed in the last decade. Based
on this discussion an opinion was formed that the information security will be implemented in C4l
systems "from outside" - in the form of coding, ciphering or compressing technologies and respective
tools. The second approach was |eft to the CH system designers and engineers. It became their
responsibility to assure robustness, sustainability and survivability of the whole information system, in
the way they seem appropriate. We do not deny this generic division of the information security
problems. We think that now is the right time to include the second approach to C4l system protection
in the flow of discussions, i.e., to consider information security as development of new sophisticated



techniques and algorithms for data and information processing.

It iswell known that the processing of ‘bad’ information will contribute to the creation of a bad
common picture of situations and threats under consideration. There is no sense to protect poor data,
obtained from obsolete sources. Everyone is eager to utilize advanced sensors. They are impressively
effective but often vulnerable. The use of multiple sensors, especially those having the capability to
measure different physical phenomena (infrared, acoustic, electromagnetic, etc), will improve the
robustness of the common picture synthesis and assessment. Thus, the efficient use of multiple
sensors can defeat enemy attempts to use jammers, deception or camouflage as components of
information operations. Additionally, multiple sensor data fusion provides opportunities to correct
errors, produced by each individual source. It is easy to demonstrate that the use of correct models of
target behavior and adequate modeling of jamming can significantly improve the robustness of
Situation assessment processes.

It is clear, that there is no perfect set of techniques and algorithms, which would be optimal under all
circumstances. In reality, the mathematical assumptions upon which many of these algorithms are
formulated are rarely satisfied. Thisis one of the main directions of information attacks. They are
often successful, because any sophisticated algorithm will produce very poor results, when the input
data does not meet the required conditions. So, the effectiveness of the C#4 systemsis sharply
dependent on the available a priori knowledge. Unfortunately, the issue of its adequate collection,
processing and storing is rarely discussed in the context of information security. We consider this area
of contemporary research and development as a promising source for the increase of information
Security.

Algorithm development for some important applications such as automatic target recognition or
identification "friend-foe-neutral" often utilizes specific flow of signals. Based on the specific
spectrum patterns, the algorithms are trained to recognize the known targets based on the features
extracted from the signals. But today it became obvious, that a thorough discussion on thisthemeis
needed, because for new "stealth” targets there are never enough signals to satisfy the requirement for
statistical significance. Besides the numerous methods, which provide the necessary synthetic training
data, other techniques must be used to obtain significance for "stealth" pattern recognizers.

Of course, there are many information processing problems related to C4l systems resistance to
information attacks. Generally speaking, all users seek to improve the security of contemporary C4
systems by improving their functional ability to estimate position, velocity, and
Identity/characteristics of entities. A very promising way to do thisisto combine information using
multiple target behavior models.

The applications of sensor’ s data fusion range from situation and threat assessment to smart weapons,
automatic target recognition, identification "friend-foe-neutral”, and intelligence. Fusion techniques
for all these applications are drawn from such advanced disciplines as space-time adaptive signal and
iImage processing, multiple model statistical estimation, neural net pattern recognition, and decision-
level artificial intelligence processing methods. It is beyond the scope of thisissue of 1& S to present
all successful multiple sensor data fusion approaches and implementations, related to information
security. Our intention is only to illustrate common problems in data fusion and how they are avoided



or mitigated in particular systems implementation.

We believe thisissue will accomplish its mission if two important conclusions about M SDF will
appear after acquaintance with the proposed selection of papers. Thefirst oneisthat in the theoretical
and applied considerations of Information Warfare the development of the new sophisticated
techniques has to be included. New robust and sustainable algorithms for moving target indication,
multiple target tracking, artificial neural network pattern recognition, early warning, genetic
algorithms, hybrid intelligent systems for situation and threat assessment, and virtual reality agents
and robot control, have to be utilized. The second conclusion is that the knowledge engineering
technology becomes of prime importance. It iswell known that knowledge is mind's eye in the
intelligence, and that the Information Warfare concept is build around the model of the human
intuition and decision-making process. No doubt that today this branch of research becomes of avita
importance for the information warfighting concept.

The brief look on proceedings of latest M SDF conferences and workshops, organized by the
Information Fusion International Association, shows lists of key research programs for design and
development of numerous new technologies and tools. Correct identification of these research areasis
crucia for information security in the 21st century. The basic purpose of this effort is not only "to
create explicit, formal catalogs of knowledge that can be used by new data processing systems’, but
also to create a comprehensive vision for the information security in the 21st century. It is clear that
the devel oped methods and algorithms are not only creative tools and means, but also parts of the
emerging new military warfighting instruments. In this interpretation these methods and algorithms
could be considered as smart "weapons’, which mission is not only to possess signals, data and
knowledge, generating real-time battlefield situation and threat assessments. They are also intended to
generate friction in the enemy’s CH system, blocking its attempt to do the same. Having thisin mind,
we believe that the multiple sensor data fusion concept gives general-purpose (i.e. universal)
understanding of social security and future warfare. Only the joint interpretation of relations between
MSDF and Information Security will form the necessary conceptual frame of reference for
understanding the 21st century environment.

In our attempt to illustrate our vision about information security and multiple sensor data fusion, we
compiled this set of articles, which we consider only a representative sample of the huge number of
publications. What we are trying to accomplish with this volume is not so much to present particular
problem solutions in depth, as to mark the diversity and interdisciplinarity of the research area.

Thefirst articlein this edition is devoted to the problem of optimization of the Multi-Source Data
Fusion system for Integration on the Canadian Patrol Frigate. Halifax Class Canadian Patrol Frigates
and CP-140 (Aurora) fixed wing aircraft are planned to be upgraded within the next decade to be able
to deal with far more demanding threat and mission environments of today and the future than when
these platforms were designed. All levels of data fusion, resource management and imaging decision
support capabilities, and their integration within a generic real-time knowledge base system are
considered. The paper describes the efforts towards restructuring and optimizing the proof-of-concept
MSDF algorithms to build and demonstrate a real-time prototype which will be ready for integration
on the existing platforms and can perform real-time tracking and identification by the end of the year
2000. This paper is an excellent example of successful implementation of M SDF technology for



overall information security increase in alarge complex system.

In the next paper the integration of topographical and topological datain the estimation of the actual
traffic situation on airportsis studied. The automatic estimation of actual traffic situation on airports
has become more and more important with the increase of the security of traffic flow. A method to
model and to integrate the airport topography and topology into the traffic situation estimation process
Is presented in the paper. A filtering algorithm based on the advanced Interacting Multiple Model
approach to hybrid systems estimation is proposed. It performs better than the known solutions, and
provides an opportunity to rise the public safety in the complex airport area situations. This paper
shows how M SDF can improve the security of air traffic control.

The next two papers treat the relation between human decision making and the fusion of information
from multiple sources. The authors of the first of the two papers use the concept of integration of
information processing functions by humans (instinctual behavior, intuition, motivational and
emotional effects, rational decision making) as an useful paradigm to be followed by designers of

M SDF architectures and algorithms. The resulting concept of computational intelligence provides for
a holistic approach to design and integration of methods and algorithms for information fusion. The
authors describe the application of computational intelligence to the fusion of data and informationin
two studies of early warning. The emphasisis on the power of soft-computing methods in designing
early warning architectures pertinent to forecasting eventsin complex dynamical systems. The
parallel with human decision making is found useful in dealing with incomplete and imprecise
information on processes on which we have no or limited a priori knowledge.

The second of the two papers threats human intuition from a different perspective. It compares human
intuition with computer based decision-making systems. The authors study performance of humans
and computer algorithmsin the task of classifying airborne targets according to their threat status and
the appropriate response from an Integrated Air Defense System. Their results show that partial
disclosure of the deterministic algorithm used to classify targets made the classification task even
more difficult, contrary to intuition. The inadequacy of intuition is considered as a compelling reason
for using specialized methods to design decision support systems.

The last paper in the first group presents an IMMPDA filtering algorithm for radar management and
tracking maneuvering targets in the presence of false adarms and Standoff Jammer. The performance
of the designed algorithm is evaluated by Monte Carlo simulation. The obtained results demonstrate
that the tracking filter satisfies the performance restriction on a maximum allowed track loss posed by
the benchmark problem. The reported results provide a glimpse on ongoing studiesin this area, as
well as on directions of further investigation. WWhen you get acquainted with this paper you will
realize how M SDF technology could be successfully utilized in Electronic Warfare.

The second group of papers presents Bulgarian MSDF R&D program and activities. A brief historical
view, chosen strategy and achievementsin the field of MSDF, and current joint R& D projects are
presented.

Thefirst paper of authors form the Central Laboratory for Parallel Processing at the Bulgarian
Academy of Sciences presents an effective Doppler-filtering algorithm using higher-order statistics.



An algorithm for moving target selection in the presence of clutter and wideband jammer is presented.
The algorithm performance is investigated by the means of Monte Carlo ssimulation analysis. The
obtained result shows how the information included in the reflected signal could be effectively
exploited for development of robust algorithms.

Tracking filters for radar systems with correlated measurement noise is the subject of consideration in
the next article. Tracking filter for systems with colored measurement noise is developed. A new
technique for adaptive evaluation of the algorithm parametersis proposed. The realized algorithm is
incorporated into Interacting Multiple Model schemes for tracking maneuvering objects. A substantial
improvement in velocity and acceleration estimation is achieved. Obviously, the robustness and
security of such algorithms will be higher because of their capability to work in uncertain
environment.

An Interacting Multiple Model algorithm for stochastic systems control is presented in the next paper.
The overall system control is synthesized as a probabilistically weighted sum of the control processes
from separate regulators working in parallel. These regulators are synthesized for each model from the
uncertainty domain. The simulation results demonstrate that the IMM control algorithm provides
better resultsin the presence of abrupt changes in the parameters than the already utilized similar
algorithms. Because of the sustainability and survivability of data processing in conditions of random
perturbations, this kind of algorithmsis very promising for an increase in information processing
security.

Multiple hypothesis tracking using Hough transform track detector is proposed and evaluated in the
next paper. Uncertainty in the measurements is managed by the usage of asynchronous multiple
hypothesis algorithms. At the cost of delayed track detection, this algorithm shows remarkable good
performance and noise resistance. The inclusion of this paper in the issue has been motivated by the
successful implementation of the multiple hypothesis approach. This approach is one of the most
important instruments for fighting uncertainty in hostile environment (jammers, false alarms, closely
spaced targets, crossing trajectories, etc.). By using the a priori information about the situations and
threats that will appear, multiple hypothesis approach gives an opportunity to raise the reliability, and
thus the security, of data processing. An interesting feature of the study is the combined use of
multiple hypothesis tracking with Hough transform track initiator.

Maneuvering ship tracking, especially ship collision avoidance, is a problem of a great practical and
theoretical interest. Real-world tracking applications meet a number of difficulties caused by the
presence of different kinds of uncertainty due to the unknown or not precisely known system model
and random processes’ statistics or because of their abrupt changes. These problems are especially
complicated in the marine navigation practice, which needs a high level of security of the vessels
traffic control. A solution of these problems is presented in the paper. A new ship model is derived
after an analysis of basic hydrodynamic models. This model isimplemented in a new version of the
Interacting Multiple Model tracking algorithm - the most cost-effective multiple model algorithm for
hybrid estimation. The performed Monte Carlo simulation shows that the model fits available data
excellently. The obtained good estimation performance demonstrates that this algorithm could be
successfully implemented in collision avoidance system for reliable real-time data processing.



For readers, interested to learn more about M SDF, four fundamental books are presented in this
volume: Multisensor Data Fusion by Edward Waltz and James Llinas, Information Warfare
Principles and Operations by Edward Waltz, Bayesian Multiple Target Tracking by Lawrence Stone,
Carl Barlow, Thomas Corwin, and Multitarget/Multisensor Tracking: Applications and Advances
(Volume I11) by Y aakov Bar-Shalom and William Blair. The fifth book - Sensors for Peace:
Applications, Systems and Legal Requirements for Monitoring in Peace Operations edited by Jurgen
Altmann, Horst Fisher and Henny van der Graaf - provides a multidimensional study of the
connection between sensor system technologies and important international security issues such as the
efficiency of peacekeeping operations. We find these books very useful not only for students and
Ph.D. applicants, but also for specialists who are not familiar with the foundations of MSDF, but are
interested in further applications and have a good mathematics background. For the beginners, a small
set of information fusion terminology is given. Additionally, a short list of introductory publicationsis
proposed. For more information and references a sample of Internet linksis provided, aswell asa
schedule of events of the International Society of Information Fusion.

We hope this issue will help to develop new interrelations within different areas of science
community. The common interest in solving Information security problem using M SDF technologies
could provide new opportunities for fruitful cooperation and consideration of future joint R&D

proj ects.
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1. Introduction

Since 1991, the Research and Development (R& D) group at Lockheed Martin Canada (LM Canada) has been developing
and demonstrating Level 1, 2, 3 and 4 data fusion, resource management and imaging technol ogies which will provide
Observe-Orient-Decide-Act (OODA) decision making capabilities/toolsin Naval and Airborne Command and Control
(C2) for application on Canadian Patrol Frigates (CPF) and Canada' s CP-140 (Aurora) fixed wing aircraft. Over the last
three years LM Canada, in collaboration with Canada’ s Defence Research Establishment Valcartier (DREV), has also
established a generic expert system infrastructure and has demonstrated that it is suitable for integrating these decision
making technologies into real-time Command and Control System (CCS). The Multi-Source Data Fusion (M SDF)
technology is the most mature among these decision making technologies and is likely to be integrated onboard a currently
fielded CCS the soonest. Over the last two years the LM Canada R& D team has started the effort towards re-structuring
and optimizing the proof-of-concept M SDF a gorithms to establish a prototype which will be ready for integration on the
existing platforms, specifically the CPF, and that can perform real-time tracking and identification by the end of the year
2000. This restructuring and optimization is occurring in phases.

First the existing proof-of-concept M SDF system was broken down into very basic modular and independent components
within the generic expert system infrastructure. Each MSDF process (alignment, association, kinematic estimation,
identification, etc.) consists of one or more of these basic components. This architecture is designed to enable independent
modification and evaluation of each component. It isalso ideal for ensuring future growth for adding additional decision
support capahilities, with minimal impact on the already implemented and demonstrated system.

Next these components are analyzed, optimized and evaluated in terms of their performance, given the characteristics and
amount of input sensor data and information. Initially, thisis done using smulated data, and the optimization is iterated
until the performance of the overall MSDF system is able to process peak loads of data with higher operational
performance than the current CPF.

In the third phase, recorded data at seawill be used to validate and further optimize the MSDF system. It is clear that the
behaviour of some of the algorithms will be different with this data, and thiswill be the most challenging aspect of this



phase. At the end of this phase the MSDF system will be ready for integration on CPF. It will not only be able to process
all data available on CPF, producing high quality kinematic and identification estimates, but will also be open for future
evolution to more sophisticated sensor data processing, fusion of additional sources of data, higher level fusion processing,
etc.

At the current time, the first two phases of this effort are close to completion. This paper includes the details, lessons
learned and results of the first two phases, and describes the specific research activities envisaged in the third phase. It also
describes some earlier and parallel proof-of-concept efforts towards demonstrating the future growth of this system.

2. KBS Architecture Based MSDF Design
The details of the MSDF prototype, 1.2 as well as the KBS architecture, have been published earlier.3:4.5.6

The KBS architecture developed at LM Canada was designed right from the start as an architecture that could support a
large real-time application through al phases of its development life-cycle, from early analysis and prototyping phases to
the final deployment. As such, it had to incorporate several key features to give maximum flexibility to the developers
without adversely impacting performance. As a minimum, the KBS shell must provide the following:

a. Speed: The key advantage of this system is pure execution speed, as aresult of itsimplementation as
a compiled system (C++) rather than an interpreted one, and because of its optimized blackboard
controller.

b. Small Overhead: Because of its streamlined design, the KBS scheduling and activation mechanisms
introduce very little overhead in the system. The difference between "Total Agent CPU" and the
"user CPU" has been shown to be less than 5 %.

. Linearity: The blackboard controller design incorporates a critical mechanism, similar to the so-
called RETE agorithm, which directly links each agent to its associated data types, thereby avoiding
costly loops each time an agent-data pair needs to be activated. This mechanism, coupled with a
design which avoids lists searches in the internal controller, ensures from atheoretical point of view
that the processing time of a given system of agents will scale linearly with the number of rules and
data instances present in the system, thereby alowing system scaleability (provided of course that the
agents themselves are linear). This linearity has been demonstrated with run-time benchmarking of
Level 2, 3 datafusion algorithmsin a previous studyS (similar to MSDF in terms of software
complexity and CPU needs) with up to 1000 tracks.

These featuresillustrate that the KBS-based implementation will not handicap the run-time performance of the MSDF
system.

Other major benefits of this architecture include modularity and the possibility of modifying each component
independently, without affecting the rest of the system, as well as the ability for integrating algorithmic and rule-based
decision support within the same infrastructure

Although Level 1 data fusion does not require rule-based reasoning, it is clear that the architecture isideal for future
growth into higher level fusion implementations.

Therefore the first step towards optimization of the MSDF prototype was to decompose it into agents. Figure 1 shows a
high level diagram of how M SDF was decomposed into agents within the KBS architecture. It illustrates the fact that the
MSDF system can be viewed as a small number of independent domains, consisting of a number of sequential steps:

a. Datareception, preparation and buffering

b. Data processing (i.e., the fusion processes)

c. Track management



d. Data output mechanism (not represented in Figure 1).

The end result of thisfirst step was a new prototype, Data Fusion on Blackboard (DFBB).

The designer can use three potential options to make optimal use of the processor (and other system’ s resources) to obtain
afaster execution, and ultimately guarantee real-time performance of the system within this infrastructure.
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Figure 1: High-Level Data Flow Diagram of Agents Present in the M SDF System. Circlesrepresent data types
present on the KBS, while squar es represent the agentsthat act on the data. Symbols XXX are used when
agents/data types are present under several flavor s depending on the context of operation (e.g. sensor name, track

and contact types, etc.)

Thefirstisintrinsic to the KBS and involves the regular blackboard scheduler together with the fine granularity of each
individual agent; the second deals with agents multithreading, which is very robust and user-friendly on the KBS; and the
third uses the real-time features of the operating system, which are still available to the developer through the KBS layer.
Because of the nature of Data Fusion algorithms, and aso because the timing constraints are not too stringent, our efforts
will focus on the first method, namely run-time optimization of individual agents.

3. Initial Optimization Efforts

The first necessary condition that has to be met by any real-time application is run-time efficiency, that is, it has to ensure
at least average real-time performance. This step involves the optimization of the DFBB to support real-time processing of

al data available on a platform, specifically the CPF.



The four domains of MSDF are more or less independent and could in principle be suitable for process prioritization
schemes and real-time scheduling. However, initial review of the DFBB code shows that three domains out of four are low
consumers of CPU resources, and the remaining one (Data Processing) consists of arelatively small number of sequential
steps which would benefit very little from a sophisticated scheduling mechanism. Moreover, CPF real-time constraints on
input data (typically several tenths of a second) do not justify the use of hard real-time features (or even a strict real-time
operating system). For these reasons, before real-time scheduling and prioritization issues are even considered, code
optimization must be pushed to the limit to increase run-time performance as much as possible.

The code optimization is done by iteratively profiling the software, evaluating the bottlenecks and re-designing/re-coding
to remove/reduce CPU utilization by such components, taking advantage of the variousintrinsic facilities of the KBS
architecture and other methods.

3.1. DFBB Benchmarking

Theinitial DFBB system processed a 100 seconds scenario in about 100 seconds (i.e., average real-time) for 100 targets,
while the 200-targets scenario requires about 3.5 times the amount of CPU to process a scenario of the same duration.

Thisis not surprising, since afew agents are clearly expected to behave in a non-linear way. In fact, all the agents
participating in updating tracks, the application of the Kalman filter and the identity update are expected to show alinear
behaviour (i.e, linear against the number of tracks), while those performing the gating are expected to behave roughly as
"Ntr2", since the gating process involves "Ntr" x "Nir" pairs (where "Nir" is the average number of input reportsin a data
set which is proportional to "Ntr").

Those expectations are confirmed by a closer inspection at code profiling results for the individual agents. Several tools
are available for thistask, depending on the level of investigation taking place. Standard profiling tools are available on
Unix, such as gprof, giving various degrees of details about the internal calls performed in each agent, with various timing
accuracies as well. For the time being, aminimally intrusive way of probing the cumulative CPU used by each agent is of
interest. For thisinvestigation, atiming tool is available on the KBS to monitor the user process time spent between the
start and the end of each agent with minimal overhead, using C "Times" functions. The nominal precision on each agent
execution (time/ call) is 1 millisecond.

Results are presented in Table 1 for most agents involved in the fusion processin DFBB.

Tablel. DFBB Benchmark Results on a 450M Hz Pentium Processor running under Solaris2.6. A very large
fraction of the CPU isused by only 6 agents (highlighted).



scenario : 30 Targets 100 Targets 200 Targets

Agent Name : num. of  Total num. Total num.  Total

calls Time of Time of Time

(secs) calls (secs) calls (secs)
AddContact 14171 0.070 20803 0.230 51214 0.260
AlignlFFC ontact 4355 0.170 8454 0.4&0 16307 0.900
AlignSG150Contact 4663 0.240 8760 0.a00 16625 0.980
AlignSP549Contact 5118 0210 5554 0.550 18278 0.990
Attribute Gating 7120 0.760 8831 2.190 0358 7.760
CreatePairs 7142 1.510 8854 3.620 0370 10310
CreateRBTrack 59 n.o1o 117 0.010 243 o.a1o
DeleteContact 14171 0.100 260808 0.300 51414 0,700
DeletePair 55084 0.650 | 153037 1.640 | 520216 G.640
ExtAdap KalmanRE RB 14112 2.170 26691 4.050 S0966 7.490
FuseProposition 2534 0.11n 45710 0.180 94772 0.410
GateRE RBE 41813 3.700 | 127129 11.690 | 490002 46870
Generate Track 14171 0.230 260808 0.490 51414 0. Frn
Identity U pdate 14112 0.320 26691 0.a00 50966 1.370
MearestMeighb our T120 0.520 8a31 0720 9355 1.270
Principal 1 0.130 1 0.140 | 0.140
SocketContact 7143 0.580 BAES5 0.930 9371 1.620
TimeUpdateRETrack 55025 5.200 | 153820 14630 | 540068 2 54.720
TrackGenlD 1615 0620 2516 0.910 3174 1.310
CPU agent total time 1742 4308 144.52
User CPU time (sec): 18.6°7 46.0°77 152.44
System CPU time (sec): 127 2.59 &.00
Execution Time {min): 0:20.40 04536 2:38.85
Overall CPU use {%): 9T 99,1 %% 997 5%%

The following observations follow directly from the data displayed in Table 1:

a. A very large fraction of the CPU time (above 90% for 200 tracks) is spent in six agents. These agents
are all on the critical path and cannot be pushed aside or executed out of sequence by some process
scheduling scheme. In order to reduce average run-time comfortably below the 100-second duration
of the scenario, thefirst step is clearly to optimize those agents to increase execution speed and, if
possible, linearize them with respect to the number of tracks "Ntr" to reduce their impact on the worst-
case scenario and improve scaleability (for Ntr > 200).

b. The most time-consuming agents, as identified in Table 1, are all (except one) agents that show a non-
linear execution time against the number of tracks processed by the system. The non-linear agents
are: TimeUpdateRBTrack, GateRB_RB, CreatePairs, DeletePair, AttributeGating; Among those, we
can identify two categories:

1. The number of callsto the agent is roughly constant, but the agent
internal algorithms involve input data of the type "Ntr" x "Nir" (e.g.,
track-input report pairs), and requires a processing time roughly
proportional to "Ntr2 ". The agents falling in this category are
"AttributeGating" and "CreatePairs'.

2. The agent execution time is roughly constant, but the number of callsto



the agent increases like "Ntr2". This category includes DeletePair,
GateRB_RB and TimeUpdateRBTrack.

From the preliminary analysis and observations above, taking each agent independently, the following optimization
strategy to reach average real-time performance was sel ected:

a. TimeUpdateRBTrack: This agent isthe most demanding in the whole system, thanks to
both internal processing needs and alarge number of calls. It is used both for the
gating process and the positional track update process (as part of the Kalman filter
process); these processes can be analyzed separately:

1. Track update: At the end of the fusion process, each contact is used to
update the state vector of one of the tracksin the system. Thetrack is
time-updated in the process, resulting in ~50 000 callsto
TimeUpdateRBTrack for the 200 seconds scenario. The number of calls
is linear with Ntr and does not cause abusive overhead in this process.

2. Position update: before the gating process, the MSDF algorithm selects a
sample of tracks, and propagates their state vector to the time of each
contact received to form a contact-track pair. Thistrandatesinto a
number of calls of order "Ntr2", for atotal of ~480 000 agent callsto
TimeUpdateRBTrack during the 200 second scenario. This latter number
could be reduced by afactor of ~6 if the tracks were time updated to an
average timeinstead of the individual times of the input reports, thereby
making the number of calls to the agent linear with "Ntr"

3. Once this agent has been linearized, another quantum leap in speed will
be gained by the use of XY coordinates for tracking, instead of the
current RB coordinates. The current agent TimeUpdateRBTrack spends
significant processing time converting the RB track state to an
intermediate XY state vector, and back to RB.

b. GateXY_XY will replace the current RB_RB version. This by itself will do littleto
improve run-time performance since the gating agents do not require RB to XY
conversions. However, in the current implementation, all gating agents compute their
statistical distance viaacall to asingle, generic method that performs several complex
matrix operations (i.e., matrix reduction, transposition, multiplication and inversion).
Thisimproves code readability but only at the expense of significant CPU overhead. It
is hard to predict the cumulative gain expected by all these optimizations; afactor of 2
is certainly an underestimation and a factor or 5 is not out of reach.

c. ExtAdapKalmanRB_RB is alinear agent, but suffers both from time-consuming RB to
XY conversions and from extensive use of matrix operations used to calculate the
Kaman gain and the resulting track state update. This agent is already linear in "Ntr"
and should drop by a (very conservative) factor of 2 at least in the final
implementation.

d. A significant speed increase can be achieved just by implementing a better object
creation strategy in the MSDF system. Most of the dynamic memory allocation can be
replaced by the use of persistent objects created upon system initialization, for instance
by replacing contact-track pair objects by asingle, persistent pair list. An immediate
effect would be the disappearance of the agents DeletePair and DeleteContact, two of
the major - non-linear - CPU contributors identified above. Thiswould result in an
immediate gain of about 40 seconds out of 320, for the 200-targets scenario. Similar
object creation is also hidden inside other agents (e.g., ExtAdapKalmanRB_RB, which
instantiates a new TrackState object for each track update) and can be improved, with
significant gains in terms of run-time performance.



The sole implementation of about half of the strategies stated above decreased significantly the CPU time needed by those
processes, prior to performing any deeper investigation to streamline and optimize the individual agents (e.g. through
internal code profiling). After a change of coordinate system, and with most generic matrix operations expanded, one gets
the figures presented in Table 2, where the results of benchmarking before and after optimization are shown side-by-side
for 200-targets scenario.

Even though object creation/del etion strategies and agents linearization still remain to be applied, overall CPU needs of
DFBB agents has already been divided by three, allowing the system to achieve average real-time performance on the
presented scenario. Further optimization is expected to bring the current figure down by another factor of two.

Table 2. Comparison of DFBB before and after thefirst round of optimisation for a 100-seconds, 200-tar gets
scenario on a 450M Hz Pentium Processor, showing the main CPU-demanding agents.

Scenario : Before After
Optimisation Optimisation
(R-B Tracking) (X-Y Tracking)

num. of Total num. of Total

Agent Name : calls Time calls Time

(Secs) (Secs)
ExtAdapKalman 50743 8.100 50764 7.510
TimeUpdate Track 891431 102.140 895377 17.000
Gate 840688 101.040 844613 12.400
CreatePairs 9326  22.350 9326  21.950
DeletePair 891681 10.110 8956006 9.940
AttributeGating 9315 12.770 9315 2.510
fotal main o agents 236.51 7131
% of tofal agent CPU 25 % 85 %
fotal all other agents 1504 14.01
Total Agents CPU 271.55 85.32

4. Supporting R&D and Future Plans

In parallel with this real-time performance optimization efforts, there are anumber of projectsat LM Canada which look at
the optimization of algorithm performance, development of alternate a gorithms which have higher performance,
development of strategies for fusion management (level 4 fusion) to activate different algorithms depending to different
context, etc.

The KBS architectureisideally suited for supporting all of these concurrent activities, permitting iterations of algorithmic
and real-time optimization indefinitely, until the desired performance is achieved of each individua platform.

The next step for the CPF isto use recorded data at sea and use it to validate and further optimize the MSDF system. It is
clear that the behaviour of some of the algorithms will be different with this data, and this will be the most challenging
aspect of this phase. In this phase too, the algorithmic devel opments of the parallel research efforts will be very useful, asa
variety of algorithms to perform each MSDF task will be available for experimentation. At the end of this phase the MSDF
system will be ready for integration on CPF.
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Optimization of the Multi-Source Data Fusion System for
Integration on the Canadian Patrol Frigate

Elisa Shahbazian, Louise Baril and Jean-Rémi Duquet

Canada s Halifax Class Canadian Patrol Frigates (CPF) and CP-140 (Aurora) fixed wing aircraft are
planned to be upgraded within the next decade to be able to deal with far more demanding threat and
mission environments of today and the future than when these platforms were designed. Over the last
ten years Lockheed Martin Canada (LM Canada), in close collaboration with Canada’ s Defence
Research Establishment Valcartier (DREV), has been devel oping and demonstrating Level 1, 2, 3 and
4 data fusion, resource management and imaging decision support capabilities, and their integration
within ageneric real-time KBS BB architecture. The Level 1 datafusion or Multi-Source Data Fusion
(MSDF) technology isthe most mature, and is likely to be integrated onboard a currently fielded
Command and Control System (CCS) the soonest. This paper describes the efforts towards re-
structuring and optimizing the proof-of-concept M SDF algorithms to build and demonstrate areal-
time prototype which will be ready for integration on the existing platforms and can perform real-time
tracking and identification by the end of the year 2000.
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1. Introduction

The main necessary functions to manage the traffic on the movement area and the airspace around an airport are surveillance, control,
routing and guidance.! Routing is often also termed planning. Today these functions are carried out manually by the controller in the
tower and in the apron. But automatic assistance is becoming more and more important with increase of traffic flow in order to reduce
the controllers’ workload from routine work. The basis for assisting systems is normally a system to estimate the actual traffic situation.

Thetask of assessing the traffic situation is done today mainly by means of visual observation. The second information source is the
voice communication between pilots and controllers. The pilot says where he actually is. Technical systems that help the controller are
TV cameraslooking at areas not directly seen from the controller, approach radar (Airport Surveillance Radar ASR) and airport radar
(Surface Movement Radar SMR). These sources present their information in various ways - visua (TV), aural (Voice), from different
points of view (al), with clutter (SMR) and synthetic (ASR). The controller fuses all thisinformation in his head in order to estimate
the actual traffic situation.

2. Concept for an automatic airport surveillance

In afuture system the task of traffic situation estimation could be performed by an automatic system. Asthe traffic objects are partly
non-cooperative and partly cooperative also two types of sensors have to be used. Non-cooperative sensors are necessary to detect
obstacles and vehicles not equipped with transponders. Cooperative sensors are necessary to identify objects. In order to present an
unambiguous traffic situation on a synthetic display to the controller a data fusion process is necessary to fuse at least the information
of these two sensor types. But also non-sensor information should be taken into account as presented in Figure 1.

Internal sensors are those installed for traffic situation assessment. Examples for sensors actually under development are:

. SMR with digital target extraction
. Near range Radar Network NRN 2

. TV orinfrared cameras with image processing



. SSR Mode S multilateration 3
. D-GPS with automatic downlink
. Fiber Optical Sensor FOS4

. Aircraft Registration Mark Identification >

Of cause further sensors are possible. When such a multi sensor system is applied to an airport the types and locations of the sensors
have to be selected according to the needs of the airport in order to optimize the cost / benefit ratio.

Intemal Sensars I—-

External Sensars

Flight Flans I—.
Taxi Plans
4 Data- Traffic

Fusion Situation

Zantraller Input

Adrport Layout I—»
Traffic Fules I—.
Ohject Model I—.

Figure 1. Data Fusion Concept

External sensors are those already installed for different purposes. Often an ASR for airspace surveillance around the airport is
available. Externa sensors aswell as flight plans give valuable hints on expected traffic objects. Thisinformation can be used, e.g., for
identification purposes. Taxi plans might be available from an automatic routing system. They define with a certain probability the
future route and future actions of atraffic object on the airport. Controller inputs such as guidance instructions also define the future
behavior of traffic objects. The use of this information would require reliable speech recognition. More redlistic is the use of controller
inputs concerning the object identity (optional manual labeling). The airport layout defines in most cases all possible routes atraffic
object can take on an airport. Heavy aircraft are not able to taxi beside the taxiways. Furthermore, traffic rules limit the number of
probable routes for atraffic object. Finally a physical object model is of course used to integrate the knowledge that traffic objects do
not jump from one place to another.

The advantage of integrating this a priori information isthat it can be quite easily obtained and that it requires little maintenance. The
problem of integrating such assumptions, i.e., that traffic objects use exclusively the taxiways or that they respect al traffic rules all the
time, includes the risk that the traffic situation estimation could fail if these assumptions are violated. So, methods have to be devel oped
and used that cope with these risks.

3. Modeling the airport layout

3.1. Purpose of the model



A model isaways asimplified representation of the main characteristics needed by the user of the model. In this case the data fusion
process is the user of the model and therefore defines the requirements to this model. Before modeling the airport layout it hasto be
defined what tasks the data fusion process has to perform using this model.

1. Positional sensor information normally refers to x-y coordinates. If the data fusion wants to use the airport layout, it has to find
out which part of the airport is actually used by atraffic object. Thisisthe mapping from mathematical 2D (or even 3D) space to
apart of theairport.

2. Theinverse conclusion from the usage of a certain part of the airport to mathematical coordinates is necessary at least for output
purposes.

3. Inference on the probable future behavior of atraffic object derived from the type of the airport part the object is using might
also be useful (e.g. high accelerations are probable on runways).

4. It should be possible to conclude from the usage of a part of the airport to the usage of further parts of the airports. Thisisa
prerequisite to find possible routes on the airport.

3.2. Modeling approach

The airport layout is modeled in two parts:

. topography
. topology

The topography describes the physical location of segments of the airport. Especially the boundaries or shapes of these segments are
part of the topography. Shapes are defined as sets of topographical points. The definition of these shapesis done in such away that each
point of the mathematical 2D space belongs exactly to one topographical shape. Therefore the shapes are defined mutually exclusive,
they do not overlap as shown in figure 2. The segments are carrying references to the topological elements of the airport.

Topological elements are nodes and links. Nodes are referencing a so topographical points - each node is associated with one physical
point. This point is normally defined on the edge of atopographical shape. The only exceptions are the ends of taxiways in the apron
area. Links are connections between two nodes. Normally exactly one link is referencing a topographical shape. The exceptions are
junctions of taxiways where several links reference the same topographical shape. Links are wearing additiona attributes to define the
operational meaning of that part of the airport, used types are , Runway", , Taxiway", ,Apron", , PushBackGate", , DriveThroughGate",
ApproachArea’, , Grass', ,,Hangar", , Terminal" and ,, Street”. Further attributes describe whether the nodes are connected in a straight
line or with an arc.

Figure 2 shows the defined shapes, nodes, links and attributes for a small part of an airport. With this model the statement ,, traffic
object at position P;" can be unambiguously trandated into the statement ,, traffic object inside shape S;" and further into ,, traffic object

following link L4" or further into , traffic object on runway 27R".

Mode My Mode M,

'
_» /5hapeS1 =

Pasition P, il S

Link Ly with attributes:
Connecting My and M;
Shape 5
Type "Runsay" o4
MName "27TR" . *

Figure 2: Modd of a runway exit



Thistranslation will only be reliable, if the position is not uncertain. If the traffic objects position P; has an error of e.g. 10 m, it would

be possible that awrong shape is selected and that all further conclusions based on this shape assumption become aso wrong.
Furthermore, the conclusion from one single position P, to the statement ,, traffic object following link L " is very fragile, the object

might just cross the runway. These aspects have to be taken into account when using the model in the state estimation process.
3.3. Application to a specific airport

There are several ways to obtain the described airport model. For airports where no reliable maps are available the best approach might
be an analysis of satellite images. Another way is the digitalization of paper maps that is very time consuming. But in most cases larger
airports today have already an airport map in €lectronic form. This can be further processed by a CAD system. The processing stepsin

this case are:

Check the validity of the map data, do not trust anything

Pick up the relevant topographical points on edges of taxi- and runways, centerlines etc.

Construct further points, e.g. centerpoints for arcs

Define shapes connecting topographical points

Declare some topographical points to be also topological nodes

Connect the topological nodes with straight and arc links

Give attributes to the links

© N o o~ W N B

Let the topological elements reference the topographical ones
4. Using the airport model in the state estimation process
4.1. Searching a topographical shape

When anew traffic object becomes tracked, it is normally not possible to decide immediately which part of the airport it isusing. A
search phase is necessary. At least one should take into account the direction of movement - the object might just cross a topographical
shape - and perhaps the type of the object - a car cannot be on final approach. Because the observation process in the sensors are
normally subject to additive noise a soft decision method should be used to find the correct topographica shape. For example,
numerical integration of the assumed position error distribution in the limits of the considered shape gives a probability that the object
is actually within the shape. Doing this - in the worst case with all shapes - one gets a discrete probability distribution on some shapes.
To filter this over time a Bayesian framework can be used. The requirement that the shapes must be mutually exclusive avoids the
necessity to apply Dempster-Shafers evidence theory. In the search phase a standard Kalman filter - state vector X, y, vx, vy and
additive white gaussian process noise - is used to filter the kinematic sensor data in world coordinates. The search phaseis only
terminated if atopographical shapeisfound with a certain high probability or the object |eaves the surveillance area.

4.2. Following a route

If atopographical shape isfound, the conclusion to the used link is done. Thelink is extended by adjacent links in both directions until
ajunction or aleaf of the node-link-network is found. The sequence of links now represents an assumed route the object is following.
Ancther Kalman filter is created filtering the kinematic sensor datain route coordinates. X represents the progress on the route, y the
deviation to the left side, vx the speed along the route and vy the speed across the route. The Kalman filter from the search phase is not
destroyed, it represents the hypothesis that the object is not following aroute. So two Kalman filters run in parallel. To avoid
divergence of their state estimates a Interacting Multiple Modd (IMM) agorithm is used to make continuously a soft decision between
the two hypotheses - using the network or not. At junctions further Kalman filters, each representing afeasible route, are created and
integrated into the IMM. Route hypotheses are generated when they become possible and are destroyed when they become implausible.
Too large deviations from the route make them implausible, the same applies to too high curve accelerations. The first Kaman filter is
never destroyed in order to cope with situations where a traffic object leaves the taxiway.

4.3. Experiments
To demonstrate the behavior of the proposed method it is tested with simulated sensor data as follows. An object ismoving at a

constant speed of 10 m/s on the airport shown in figure 3 (Braunschweig airport). It starts on the DLR apron and taxies via F and C.
Two fictive sensors observe the moving object. They only deliver positional sensor plots. The characteristics of the two sensors are:



Sensor 1 Sensor 2
accuracy in x (1s) 15m 3m
accuracy iny (1s) 3m 15m
update interval 1,25 sec 0,95 sec
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Figure 3: Layout of the Braunschweig airport
First a standard Kalman filter is tested for comparison purposes. The state vector is composed of X, y, vx and vy. Random accelerations

inx and y direction with a 1 svalue of 0,5 m/s? represent the process noise. Figure 4 shows the result. The gray line represents the true
object position. The gray crosses represent the plots of the two sensors and the black solid line the estimates of the Kalman filter.
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Figure4: Filtering with a standard Kalman filter in world coordinates

Figure 5 shows that an improvement can be achieved when filtering in route coordinates instead of world coordinates. That requires the

knowledge of the correct route. Figure 6 presents what can happen in the worst case, if the route assumption iswrong (DLR-F-B) - the
filter diverges!
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Figure5: Filtering in route coordinates, assuming the correct route (DLR-F-C)
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Figure 6: Filtering in route coordinates, assuming the wrong route (DLR-F-B)

Finally, figure 7 shows the filtering with the proposed IMM method that searches and maintains the correct route automatically.
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Figure 7: Filtering with the proposed IMM method
The main advantages of the proposed method are:

. Thefilter predicts the object motion ,,around the corner”. Therefore, less systematical errors occur when the object
isfollowing a curve. This might also be useful for a data association process to enhance the track continuity.



. The relationship of the traffic object to the airport is permanently estimated. Thisis part of the data fusion
function , situation assessment". Following subsystems, e.g., Routing, require such higher level data
representation.

The disadvantage is a higher computational complexity. Three Kalman filtersintegrated in one IMM are approximately as expensive as
four stand alone Kalman filters.

5. Summary

A method to model and to integrate the airport topography and topology into the traffic situation estimation process has been presented.
It performs better than standard Kalman filter solutions. A certain abstraction of the state description of atraffic object from
mathematical coordinates to higher level functional airport elementsis obtained as a positive side effect. The proposed method is
computationally more complex than standard solutions.
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Integrating Topographical and Topological Data in the Estimation
of the Actual Traffic Situation on Airports

Christoph Meier
Keywords. Data Fusion, Topographical and Topological Data Estimation, Kalman Filtering

The automatic estimation of the actual traffic situation on airports is becoming ever more important
with the increase of traffic flow. A method to model and to integrate the airport topography and
topology into the traffic situation estimation process is presented in the paper. A certain abstraction of
the state description of atraffic object from mathematical coordinates to higher level functional
airport elementsis obtained as a positive side effect. A filtering algorithm, based on the advanced
Interacting Multiple Model approach to hybrid systems estimation is proposed. It performs better than
standard Kalman filter solutions. The proposed method is computationally more complex than
standard solutions.
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I. Introduction

The rapid development of information technologies in the last decades of the twentieth century created opportunities to increase the effectivenessin
practically every area of human activity. The use of ever more powerful computers contributed to a better understanding of the nature of many social,
economic, physical and physiological phenomena. Somewhat surprising was the discovery that the increase of data collection and information
processing power does not necessarily increase our ability to define cause-effect relationships and to predict the development of real-world processes.
Computers helped usto discard certain paradigms and to reveal some characteristics of nonlinear behavior and complex interaction. Nevertheless, our
abilitiesto analyze, model, and predict is still rather limited. A number of methods have been proposed that combine the power of computer processing
with attempts to imitate biological processing and human intellect. A new framework recently emerged — computational intelligence (Cl). The
application of Cl methods to the problem of fusing data and information from multiple sources has significant potential, not yet fully discovered.

Rapid developments in sensor and computing technologies allow to combine data and information from multiple sources. The advantages of
combining outputs from a number of sources to increase performance has been long recognized in such diverse areas as political economy models,
financial management, weather and climate prediction, estimation and prediction of physiological condition, diagnostics. The implication of effective
fusion for the purposes of monitoring, situation assessment, early warning, and other security related issuesis crucial. A small sample of examples
includes:

. Theimpact of the explosion of information technologies on the capahilities for political and military early warning, including the
capabilities for detection and collection of threat indicators, the dissemination of potential warning signals and threat
assessments, the interpretation of collected signals and patterns, the capabilities to understand, interpret and respond to collected
warnings;2

. Theimpact of sensor and information processing technologies on organizations and systems for monitoring in peace-keeping,
arms control and humanitarian operations;3

. Design and implementation of measures and systems for information security, information warfare and critical information
protection;4

. Design of reliable and safe systems for individua landmine detection based on using ground penetrating radar with integration of
multiple microwave-sensor technol ogies and development of multi-sensor data fusion, feature extraction and object classification
methods and algorithms.2

Since the mid-80s, MultiSensor Data Fusion (M SDF) emerged as a powerful technology for handling large amounts of data and decision support. Data
fusion is examined as the integration and application of both traditional disciplines and new areas of engineering to achieve the fusion of data. These
areas include computer science, expert systems, communication and decision theory, epistemol ogy, estimation theory, digital signal processing, fuzzy
logic, and neural networks. Methods for representing and processing data (signals) are adapted from each of these disciplines to perform data fusion.



Rapid developmentsin the field of information technology created opportunities for qualitative increase in data storage, processing power, and
presentation. On that basis, the M SDF processes, including collection of data from multiple sensors, association, aggregation, and merging of datato
increase the understanding of past and current situations, provided new opportunities. Ultimately, the output from a data fusion system isaimed at
supporting a human decision process. The usefulness of afusion system is measured by the extent to which the system supports the intended decision
process.

In the process of decision making most people can not process rationally large quantities of data rapidly and accurately. But, as arule, people deal well
with situations, characterized by incomplete, imprecise, and uncertain information. Therefore, to adequately support the decision process, we need
‘technologies’ that, while processing increasing amounts of data, exploit the human tolerance for imprecision, uncertainty, and partial truth. Such a
technology is computational intelligence.

In the current paper, we examine potential applications of computational intelligence methodologies to support decision making by fusing data and
information from multiple sources. In section | we briefly describe the well known data fusion and decision support system architecture for command
and control, based on the SHOR decision making model. Section I11 presents this model in the framework of a new view on information space. Section
IV outlines basic ideas of computational intelligence, and section V - its application in devel oping systems and algorithms for data and information
fusion and decision support. As an example, in section VI we describe the application of Cl methodologies in two ongoing projects. We conclude by
emphasizing the potential for expanding traditionally military technologies and their contribution to increasing stability and security.

Il. MSDF and Decision Support in Military Applications

The decision making model proposed by Wohl in studying command and control is depicted on Figure 1.6 The SHOR model comprises four
dynamically interacting elements:

. Stimulus - The initiation of the decision making process to provide information on the current situation and the associated
uncertainties;

. Hypotheses - A set of perception alternatives explaining the real-world situation;
. Options - Response aternatives made available to the decision maker;

. Response - The selected action to be taken.

DATA FUSION '!  DECISION SUPPORT

Hypotheses
(perception
alternatives)

Triggering
event

Shmulus shmulus

(zensor data)

Eeszponse
nativess)

ENVIRONMENT

Figure 1. Data fusion and decision support in the SHOR model

Waltz and Buede divide the ‘information’ part of the mode! into two distinct subsystems for data fusion and decision support.? Data fusion collects
information from various sensors and sources in order to develop the best possible perception of the situation. The situation is described by friendly
and enemy orders of battle, |ocations and movements of weapons and equipment, events, and intelligence as it relates to past, present, and predicted
behavior of the enemy. In the fusion process the authors include collection, association, aggregation, and merging of data to create and display current
and past situations. The decision support function creates and evaluates alternative estimates of the real situation and the responses available to the
commander. Both functions are performed interactively, and the results of the military response are included in the model through a feedback loop.

IIl. MSDF vs Multisource Information Fusion

In 1986, Prof. Arapov published an overview of the developing information technologies and their societal impact.8 For that purpose he proposed a
model of the information space. Twelve years later amodified version of his model was announced, called Stratified Information Soace Model .2 Both
models allow to study IT developments and influence in three strata: data and signals, knowledge, and culture. Accordingly, we propose a
modification of the SHOR model, depicted in Fig. 2.
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Figure 2: MultiSource Information Fusion (M SIF) for decision support

This modification allows for a better representation of the information strata Data-Knowledge-Culture and gives a preference to the term source,
examining sensors as just one type of sources. Respectively, the type of processing along the information strata changes from exclusively technically
oriented to increasing human participation.

The MSIF model represents the intersection between the MSDF framework20 and the information space paradigm.11 There are two main differences
between the classic SHOR model and the MSIF mode!:

1) We examine the term information more broadly to include not only technologically acquired data from the object under study and its environment,
but also:

. inputs based on expert analysis, i.e., intelligence forecasts;

. Ccriteria-type inputs for the decision making process based on value systems, doctrine, education and training, etc.

2) Instead of response we propose the use of term action. The difference is not just linguistic but in the essence. The term response assumes reactive
attitude while, asin the cases under examination in section VI, we aim at taking preventive measures.

The outlined differences are not crucial. Nevertheless, they have methodol ogical implications and, in our opinion, the MSIF model will help to expand
the application of proven M SDF techniques to diverse problem areas. And although in many cases there is an overlap between various strata of the
information space and variety of combinations between roles of technology and experts, this model allows for a unified framework clearly separating
functions in the system from methods dealing with partial, uncertain, and imprecise information.

At thisjuncture, several approachesto MSDF were proposed in order to deal with incompleteness and ambiguousness both in the available dataand in
the preferences of decision makers. In terms of methodology, a minimal representative sample includes contributions from fuzzy set theory, neural
networks, probabilistic reasoning, and multiple-criteria decision making under uncertainty:

. Waltz and Buede use the term soft decision data - representation of uncertainty using probabilities, possibilities, or fuzzy rules -
as opposed to hard decisions (declarations). Hard decisions are reported as single statements, and soft decisions are provided as
multiple hypotheses, each with its own representation of the uncertainty associated with the hypothesis.12 When fuzzy rules are
used, uncertainty is reflected both in the fuzzy character of the if-then rules and the fuzzy presentation of the input information
through membership functions.

. Studying the approaches to identity declaration in MSDF, Hall examines the potential for application of adaptive neural networks
(NNs) for pattern recognition.13 On the next level of the MSDF system - decision level identity fusion - he examines the use of
classical inference, Bayesian inference, Dempster-Shafer method, generalized evidence processing theory and heuristic methods
for association/fusion of identity declarations from different sources.

. Rao studies the capacity of neural networks to fuse data and information when the error densities of the separate sources are



unknown.14 Many of the existing information integration techniques are based on maximum a posteriori probabilities of
hypotheses under a suitable probabilistic model. However, in situations where the probability densities are unknown (or difficult
to estimate) such methods are ineffective. Therefore, as opposing to early methods (many of which required even independence
of the errors of the sources), he envisions NN schemes that extract/infer fusion rules on the basis of empirical data and employ
suitable training algorithms. Furthermore, Rao proves that for a certain class of continuous functions a feedforward neural
network infers fusion rules that provide empirical risk minimization.

. Decision making involves choosing some course of action among various aternatives. In amost all decision making problems,
there are several criteriafor judging possible alternatives. The main concern of the decision maker isto fulfill his or her
conflicting goals while satisfying the constraints of the system. Milakooti and Zhou formulate the multiple criteria decision
making problem and use an adaptive NN to rank the set of discrete alternatives where each alternative is associated with a set of
conflicting and noncommensurate criteria. 15 Examining decision making problems under certainty, they consider discrete sets of
alternatives with the assumption that there exists a multiple attribute utility function (MAUF) that can represent the preferences
of the decision maker. They demonstrate that adaptive NNs can represent a more general and flexible MAUF than other generally
used types of MAUFs. Adaptive NNsfor representing various MAUFs enable the decision maker to rank alternatives and choose
the most desirable ones. The authors show that the NN approach to solve multiple criteria problemsis versatile yet robust
approach to quantification and representation of the preferences of the decision maker: First, it does not assume any particular
structure or property of MAUF; secondly, the NN method generates a completely assessed function; and, third, it can adjust and
improve its representation as more information from the decision maker becomes available.

The cited works provide but a glimpse at the power of fuzzy logic and neural networks to deal with complex processesin the lack of certainty and
precision and to learn by example. Even more promising is their combined implementation, integrated with powerful optimization techniquesin a
probabilistic framework.

IV. Computational Intelligence and Soft Computing Methodologies

Recently, the term ‘ computational intelligence’ is gaining influence in analysis, modeling and control of complex processes. It describes a concept for
synergistic implementation of information processing methods in parallel with levels of human information processing. Figure 3 depicts this parallel.
On theleft sideisthe ‘biological’ processing according to the idea of the "triune brain".16 It envisions a cortex organized in three layers responsible
respectively for instinctual behavior, motivational and emotional influences, and rational influences on decision making. The parallel with
computational intelligence is presented on the right side of Fig. 3. The three respective layersinvolve implementation of quantitative statistical
methods, soft-computing, and rule-based approaches of the symbol-processing kind.17
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Figure 3: Parallel between human and computational intelligence

Guiding principle of the implementation of soft computing is the exploitation of the tolerance for imprecision, uncertainty and partial truth to achieve
tractability, robustness and low solution cost. In 1994, Prof. Zadeh considered as main components of soft computing fuzzy logic, neural network
theory, and probabilistic reasoning, the latter including parts of evolutionary computation, parts of learning theory, belief networks, and chaos
theory.18 Of these, the first principal component is primarily concerned with imprecision of data and information, the second - with learning, and the
third - with uncertainty. Soft computing is not a single methodology but rather a consortium of methodologies. At this juncture, fuzzy logic, neural
networks, probabilistic reasoning and genetic algorithms are considered as principal constituents of soft computing. In many applicationsitis
advantageous to exploit the synergism of these methods by using them in combination rather than alone. Examples of combined use include neuro-
fuzzy, neuro-genetic, neuro-probabilistic, fuzzy-probabilistic, genetic-fuzzy and neuro-fuzzy-genetic systems.19

V. Soft Computing in MSIF and Decision Support
The focus of the Berkeley group led by Prof. Zadeh is on the devel opment of techniques for combined implementation of fuzzy, neural, genetic, and

probabilistic methods in the design of autonomous systems.20 We study the application of soft computing methodologiesin MSIF for decision support.
Accordingly, we transform the SHOR mode! (Fig. 2) to aMSIF mode! (Fig. 4) that presents functional problemsin MSDF21 as problems of



information fusion in the face of imprecision, uncertainty, high complexity, and change.
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Figure4: MSIF in the Information-decision-Action (IDA) loop
In this dynamical framework, principal tasks in fusing information from multiple sources are:

. Classification - placing the current situation in a class of typical behavior. This goal is achieved when we have a priori (usualy
expert) knowledge of the types of behavior allowing to implement supervised learning methods. If such knowledgeis not
available, solving the task involves formation of classes via unsupervised learning;

. Modeling - finding a description that accurately captures features of the long-term dynamical behavior of the system;
. Characterization - determining fundamental properties of the system with little or no a priori knowledge;

. Forecasting - accurately predicting the short-term evolution of the system.

These tasks are overlapping but not necessarily identical. They serve as building blocks for event forecasting (Fig. 5), which we regard as the basis for
decision support. Details are provided in the next section.
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VI. Computational Intelligence for Early Warning
Soft-computing methodol ogies are applied in two ongoing projects at the Space Research Institute of the Bulgarian Academy of Sciences.
6.1. Classification of physiological condition for advance warning

Multisource fusion of physiological information is a promising venue in the analysis and forecasting of biological and psychological processes. A
R&D group at the Space Research Institute designed the 32-channel system "NEUROLAB-B". The system, used on the "Mir" space station, records
four channels of ECG, four channels of EMG, two channels of EOG, blood pressure, pulse wave, breath frequency, two channels body temperature,
skin conductance level, dynamometric probe and somatosensor stimulation, and is working on a Holter system for 24-hour recording.22 Up to now,
datais being processed by traditional statistical and signal processing techniques. However, recent research results convincingly ascertained the
nonlinearity of many physiological processes and the complex interaction of variety of factors.23 On the basis of this multisource information the
research group started the development of novel nonlinear methods and algorithms to forecast physiological condition of an operator working under
external conditions.

6.2. Early warning through classification of security situations

Effective prevention of crisis or moderation of their impact requires advance warning. The application of traditional statistical and knowledge-based
approachesto early warning did not prove sufficiently powerful for the purposes of early warning. That is not surprising if we account for the highly
nonlinear character of triggering mechanisms and the levels of uncertainty caused both by the imprecise and partial information and by the inherently
complex dynamics of security processes.24

In the quest for efficiency, the use of artificial NNs has been suggested. After transforming the expert knowledge into a representative set of indicators
in aform suitable for NN processing, they are fed into an NN recognition scheme, trained on a historical data base. Thus, advance warning is issued
when a particular security situation is recognized as a preconflict situation.

Both studies are aimed at providing advance warning. Although to a different degree, the resulting systems must support decisions in the face of
poorly defined situations, with poorly measured variables, incomplete and inaccurate data, and incomplete theoretical understanding. We aim at a new
quality both in the accuracy of prediction and in presenting information in the language used by decision makers through combined application of
computational intelligence as follows.

6.3. Computational intelligence on the implementation stage

To classify certain situation as a potential pre-crisis situation we apply a combination of fuzzy logic, NNs and probabilistic computing. Fuzzy
representations of the input information reflect the symbolic nature of the expert opinion. The use of fuzzy sets alows to employ a mode of
approximate reasoning, to describe knowledge by linguistic concepts, and to make decisions based on imprecise and incomplete information in away
similar to human beings. However, the sheer amount of information precludes the inference of a complete set of fuzzy rules. Therefore, we take
advantage of the learning capabilities of NNs. The combination of a particular form of neura network, i.e. multilayer perceptron (MLP), with the
transparent knowledge representation of fuzzy systems, produces a model with the ability to learn from real world observations and whose behavior
can be described naturally as a series of linguistic humanly understandable rules.

Furthermore, instead of seeking a single optimal event forecasting model, we envision the use of several potential predictive models, which may lead
to different inferences. Intuitively, ambiguity over the model should dilute information about predictions. A promising technique for properly
accounting for this source of uncertainty, aswell as for interpretation of the output of the classification scheme (type of expected crisis) isthe Bayesian
model averaging. Of considerable importance is the fact, that the treatment of the neuro-fuzzy system from a Bayesian perspective leads to practical
procedures for estimating the confidence in the predictions.

Finally, it is possible that not a single configuration of inputs points to an upcoming crisis, but the way in which a configuration evolvesin time.
Hence, we need to build awarning system with inherent dynamic behavior. But MLPs are purely static and incapable of processing time information.
Several approaches for incorporation of the dynamics in classification and forecasting schemes have been successfully applied:

. Oneway to extend MLPsto time processing is by creating atime window over the input configurations to serve as memory of
the past. Thisleads to the so called time-delay NN,

. Alternatively, recurrent NNs may be applied. The latter, however, are not guaranteed to be stable and they cannot be trained with
standard back-propagation. These problems are avoided in a scheme known as partially recurrent network;23

. A third approach, devised by one of the authors26 involves design of nonlinear predictive models of the dynamics of some input
variables and the use of the parameters of the model as potential featuresin the input space of the classification scheme. A similar
approach, involving global dynamical models of the data, was used successfully to classify high noise signals, such as actual
open ocean acoustic data.2?

6.4. Computational intelligence on the design stage

One of the goalsin design isto develop methods that account for prior knowledge of data and exploit such knowledge in reducing search and that, in
the same time, are robust against uncertainty and missing data problems. Bayesian methods and decision anaysis provide a basic foundational
framework. This framework is successfully supplemented by contributions of chaos theory and genetic algorithms in the definition of an informative



input space, the choice of the structure of the forecasting model, and the calibration of its parameters (the learning phase).

Design of input space. Chaos theory is applied to estimate the dimension of possible attractors in the situational dynamics. The estimated attractor
dimension is used to initialize the number of input indicators of the classification scheme. Then, the genetic algorithm technique is used to precisely
configure the indicator space so that it accounts for both dimensional and time (memory-type) factors.28 At this stage the dimensionality of the input
datais reduced and deficiencies such as missing input values or incorrect target values are eliminated.

Structure of the forecasting scheme. Requirements for tractability (overcoming the curse of dimensionality) and model generalization (expanding the
predictive power of the classification scheme to previously unseen situations) give significant advantage to parsimonious models. Furthermore, such
models provide for a qualitative insight into the behavior of the system in the form of fuzzy rules. Therefore, we formulate the design as an
optimization problem. The genetic algorithms are well suited for optimization in high-dimensional, nonlinear and noisy problems. They offer ameans
to systematically and efficiently explore the space of forecasting architectures. Also, they allow to optimize concurrently the NN topology, its
parameters, as well as the parameters of the learning algorithm.

An dternative is provided by the Bayesian approach. Using only the training data, it allows different models to be compared in an objective and
principled framework for dealing with the issues of model complexity. Also, estimations of the relative importance of different inputs can be
automated. Choices can be made as to where in input space new data should be collected in order that it be most informative (such use is known as
active learning).

Learning. Many agorithms exist for optimizing the values of the parameters in the network, in other words, for training the network. Successful
solutions of various problems apply latest developments in machine intelligence allowing to mimic the ability of the human mind to effectively
employ modes of reasoning that are approximate rather than exact, to learn from past experience, and to adapt to environmental changes.22 In most
cases, we have expert-defined pairs "input configuration of indicators - class of situation." Then we apply agorithms for supervised learning, closely
approximating available pairs (training examples). Examples for such algorithmsin NN learning are back-propagation and simulated annealing.

When expert knowledge is lacking or insufficient, unsupervised learning techniques are applied for data clustering. Central data clustering, also called
vector quantization, and pairwise data clustering are two classes of combinatorial optimization methods for data grouping which extract hidden
structure from data. The main issues in algorithm development are to determine appropriate quality measures for the evaluation of clusters and to limit
the complexity of the cluster set. Several models for data clustering exist, e.g., K-means clustering, selforganizing feature maps, the neural gas
agorithm and complexity optimized vector quantization. Respective algorithms to estimate the cluster parameters have been derived in the maximum
entropy framework which has been proven to be optimal for stochastic optimization. Clustering models for proximity data have also been introduced.
Proximity data characterize items by their mutual relationship and not by coordinates in a vector space.30

Data issues. For most applications before training the classification/forecasting scheme it is necessary to transform the data into some new
representation. Because of the very few assumptions in using computational intelligence methods, this problem is alleviated to some extent and less
emphasis has to be placed on careful optimization of pre-processing than would be the case with simple linear techniques, for instance. Nevertheless,
in most practical applications pre-processing of available data has a significant influence on the performance of the final system. Computational
intelligence methods find successful applicationsin:3l

. Input normalization;

. Input encoding;

. Dimensionality reduction: feature selection,32 feature extraction;

. Prefiltering, removal of outliers;

. Dealing with missing data;

. Integration of domain specific knowledge.
Similarly, Cl methods are used for post-processing to provide required output data.
VII. Conclusion
The application of computational intelligence in our studies extends the potential of ‘traditional’” MSDF. The discipline of multisensor data fusion
appeared as a particular technology to support command and control. Thus, our extension of MSDF may be examined as a special type of convergence
of soft ‘military technologies to non-military applications.
Of particular interest is the application of modern information technologies to increase international stability. Early warning through close
international cooperation has a great potential to defuse crisis and conflict even before they appear. The monitoring of security situations for the
purposes of early warning is such application calling for all-source data and information fusion, analysis, assessment and decision making support.33
Therefore, through development of architectures for multisource information fusion, the application of computational intelligence may contribute to
increasing stability and security.
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Computational Intelligence in Multi-Source Data and Information
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A model of MultiSource Information Fusion (MSIF) is proposed. It expands the application of proven
MSDF techniques to diverse problem areas. Thismodel alows for a unified framework clearly
distinguishing processing functions from methods dealing with partial, uncertain, and imprecise
information. The concept of computational intelligence provides for a holistic approach to design and
integration of methods and algorithms for information fusion. We describe the application of
computational intelligence to the fusion of data and information in two studies of early warning. The
emphasisis on the power of soft-computing methods in designing early warning architectures
pertinent to forecasting eventsin complex dynamical systems.
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1. Background

One of the authors of this paper has developed a canonical design method for designing Situation
Assessment strategies in the form of very efficient decision trees.1.2 This method uses the
mathematical theory of information, developed by Claude Shannon in the 1940's, to reduce
uncertainty (Entropy) most efficiently.2 The method applies when:

. Thereisadatabase containing a statistical description of the
objects in the Frame of Discernment;

. Thereisacapability to measure at least some of the parametersin
the data base;

. Theremay be adifferential cost, usually in time, for making
parameter measurements;

. High confidence, on-time classifications are important.

Specifically, the program, called the Situation Assessment Evaluation Tool (SAET) produces a
decision tree by selecting the most efficient entropy-reducing parameter to expand each node. When
the decision tree is compl ete, the program provides a report card covering performance. The report
card contains statistics which include reliability and response time. The program can also run a



simulation and provide very detailed information about the performance of the run-time algorithm.

The motivation for developing the SAET was the task of designing an efficient Radar classification
Algorithm for use in Radar Warning Receiversin combat aircraft. The Radar Warning Receiver
makes measurements of radar parameters on demand. Each measurement has acost in time. Thereisa
strategy for fetchng the measurements and comparing them to the data base in order to produce a
confident, on-time identification of the radar. Appropriate warning is given to the aircrew using an
alpha-numeric cockpit display and audible tones.

Thistask istypical of many Situation Assessment tasks. Another such task is the design of Indications
and Warning (1&W) programs. In 1&W, parameters are collected and evaluated according to an
efficient strategy in order to determine the probable activities and intentions of an adversary. In one of
the previous studies,2 the SAET was applied to several Situation Assessment tasks. A preliminary
examination of the data bases suggested that the tasks were approximately comparable in difficulty.
However, one of the assessments turned out to be two orders of magnitude more difficult than
another. An 1&W designer relying on intuition could easily be led astray if the perception of the
relative difficulty of the design tasks was so far from being correct.

In the present task, airborne target threat assessment, a similar finding occurred. Data that (intuitively)
should be helpful to a human decision maker actually degraded the capability to make confident, on-
time decisions. In this paper, a description of the threat assessment study is given and the non-intuitive
finding is explained.

2. The Target Classification Study

In a study being conducted by the Air Force Research Laboratory, Brooks AFB, Texas, the
performance of human observersin learning to classify airborne threats is being investigated. In this
study, a deterministic algorithm classifies targets using a point-scoring system. The lowest scores
indicate that a target being seen by aradar is friendly without doubt. The highest scores mean that a
target is hostile without doubt and represents a threat to friendly forces.

Nine parameters are used by the observersin making their assessments. In some cases, a partial
presentation of five of these parametersis given. The parameters are visually coded so that the effects
of shape, size and color of the presentation can be determined. The nine parameters are:

Type of IFF (transponder) return

Speed

Flight path relative to the radar

Size

Position relative to known airway corridors

Altitude

N o g &~ w Dd o

Range to the radar



8. ESM indications (type of airborne radar)
9. Changein altitude

Each parameter is scored as"Zero", (Mimimal threat) to "Two" (Maximal threat). Before being
summed, the parameter scores are processed to reflect weight of importance and pairwise interactions.
Since IFF isrelatively important, its score is doubled, giving possible weights of "0", "2" or "4". The
remaining eight parameters are grouped in pairs. The score for the pair is the product of the scores for
the two parameters in the pair. For example, if atarget received a score of "2" for speed and "0" for
flight path, the score for the pair would be "0". After processing the scores for |FF and for the
remaining pairs of parameters, the numbers are added. A high score correspondsto "Defend” and a

low score correspond to "lgnore". Intermediate scores match the categories of "Monitor”, "Review",
"Warn", "Ready" or "Lock-on".

A large number of human trials were conducted. The subjects were told the meaning of the visual and
other cues and were told generally that a high score corresponded to a more serious threat. They were
not given the specific algorithm used for scoring, but they were told which parameters were to be
considered pairwise. In some cases, they had only five of the nine parameters to consider. In other
cases, time constraints were introduced.

The human responses have been analyzed and are currently being compared with the results produced
by the ideal decision maker provided by the SAET. The remainder of this paper will consider the
performance of the ideal decision maker, not the human subjects.

3. Results

Theinitial reaction of the investigator to the results of this experiment was that the SAET had worked
hard to produce a poor result. Based on the relative frequency of outcomesin the Frame of
Discernment, the initial Entropy is about 2.1 bits (The amount of Entropy associated with al the
possible outcomes of two (three) tosses of afair coin istwo (three) bits). Each of the nine parameters,
If used first, would reduce the Entropy by about 0.25 bits. After the optimal decision tree runs, about
1.47 bits of uncertainty remain.

The SAET was run to the 50 % confidence level, then forced to make a decision based on the highest
probability, even if lower than 50 %. The correct classification was made 56 % of the time and the
mean error was 0,58 categories. That is, aresult of "4" would, with very high probability be between
"3"and "5".

"Max Nodes" are the possible combinations of parameters that could be encountered. The program
only had to generate a small fraction of these combinations to design the decision tree. Generating
more nodes would not have improved the result.

The second run (parameter dependencies considered) produced a slightly worse result. Each
parameter, if used first, would reduce Entropy by only 0.14 to 0.19 bits. The remaining Entropy after
running the optimal decision tree was 1.48 bits.



The forced decision was right 54 % of the time and the mean error was .62 categories. The
investigator’ s reaction was that this result was not consistent with intuition and could be an error in
the program. Since the data base for the second run was based on partial execution of the "ground
truth" algorithm, the result should have been better.

Table 1. Performance of the optimal decision-maker compared to the "Real-World" (algorithmic)

solution.
CONDITION ENTROPY IZDIT:OCB(/)A\IEIIQLEIC-ZF'F MEAN MAX NODES
(INITIAL/FINAL) DECISION ERROR | NODES | USED
DEPENDENCY
RULESNOT 2.1/1.47 0.56 0.58 19,683 353
USED
DEPENDENCY
RULES USED 2.1/1.48 0.54 0.62 1024 325

4. Discussion Of Results

The statistical distributions of the parameter measurements were almost identical. Only the first
measurement (IFF) was slightly different from the others. This was true in both the nine parameter
and the five parameter cases. There was a great deal of noise (overlap) in the probabilities for each
parameter. In other SAET investigations, one or more parameters had minimum overlap, at least for
severa of the classifications being predicted. As aresult, a classification of "4" for example, could be
quite far from aresult of "3" or "5". The program finds these productive parameters and uses them
first to reduce uncertainty more efficiently. This property of the data base enables the SAET to prune
the resulting decision tree very quickly.

In the present situation, results of "3", "4" and "5" are statistically quite close. It is difficult for the
SAET to distinguish them with high confidence. Therefore, the performance of the SAET is
reasonable in this very difficult decision-making task. The mean error of a classification was
acceptably small. Thereis probably little operational importance to an error of one category. If ahigh
threat target " 7" were classified asfriendly "1" that would be very serious, but this would occur rarely
if at all.

The relatively poor performance of the combined (five) parameter caseis also reasonable, but it
seemed difficult to understand how partial execution of the scoring algorithm can actually be a
handicap in predicting the threat category. The SAET is based on the assumption that any two
parameters are either conditionally independent or correlated. The rule for combining parameter
measurements in this investigation, however, isto multiply the scores for the two parameters and use
the result. Thus, if one parameter wasa"2" (high threat indication) and the other wasa"0", (low



threat), the result would be "0" for the combined parameter. The impact of this method is that one
parameter can negate another, thereby reducing the information bandwidth by discarding data that
should produce real information. Parameters are neither conditionally independent nor correl ated.
This part of the investigation was studied very thoroughly. It appears correct that informing the human
observers, in part, of how the scoring algorithm works actually degrades their decision-making ability.

5. Comment

It isthe peculiar strength of the SAET that it surpasses human intuition and sometimes produces
surprising, but correct results. The investigator noted a similar result in doing Indications and Warning
experiments in which some problems turned out to be much harder to accomplish than other. Only a
meticulous examination of the data base revealed why this was so. The current project seemsto be
another case in which the mathematical theory of information beats intuition.

References

1. Andrew Borden, "The Design And Evaluation of Situation Assessment
Strategies’, Information Security: An International Journal 1, 1 (Summer
1998), 63 - 74.

2. Andrew Borden, "Human Intuition and Decision Making Systems,"
Information Security: An International Journal 1, 2, (Fall-Winter 1998), 67 -
72.

3. Claude Shannon, "A Mathematical Theory of Communications," Bell
Systems Technical Journal 27 (1948), 379 - 423 and 623 - 656.

LINDA ELLIOTT received her Ph.D. in Management Sciences from the Michigan State University. Sheis a Senior
Staff member with the Veridian Corporation, San Antonio, Texas.

ANDREW BORDEN isaretired USAF officer with along background in developing systems that make decisions,
especialy in military avionics. His last active duty assignment was as Deputy Chief of Staff for Intelligence, (then)
Electronic Security Command. He has worked in industry, in academia and for NATO as Principal Scientist for
Electronic Warfare, SHAPE Technical Centre (now the NATO C3 Agency). Mr. Borden is the Chief Scientist of DRH
Consulting, San Antonio, Texas. He has advanced degrees in mathematics from Kansas State University and The Ohio
State University.

BACK TO TOP

© 1999, ProCon Ltd, Sofia
Information & Security. An International Jour nal
e-mail: infosec@mbox.digsys.bg



mailto:infosec@mbox.digsys.bg

Human Intuition and Decision-Making Systems (lI)
Linda Elliott and Andrew Borden

A canonical design method was applied to the task of building a system to classify airborne targets
according to thelir threat status and the appropriate response from an Integrated Air Defense System.
The nature of the data base made the classification task (understandably) difficult. However, partial
disclosure of the deterministic algorithm used to classify targets made the classification task even

more difficult, contrary to intuition. The inadequacy of intuition is a compelling reason for using
canonica methods to design for decision making systems.
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1. Introduction

Multiple target tracking is a very important and rapidly developing area. The formulation of a clearly defined standard or
benchmark problem for evaluation and comparison of the various existing algorithms is necessary. Researchers have
established such a unifying general problem that imposes different and contradictory requirements in the face of the first
benchmark problem (BP) defined in 4 and further extended in 8. The first benchmark problem considers only aircraft tracking
and pointing/ scheduling of a phased array radar. The second benchmark problem8.7 involves the presence of False Alarms
(FA) and Electronic Countermeasures (ECM) and requires radar resources management. The tracking filter performance
criterion is the minimization of aweighted combination of aradar time and energy at the cost of a maximum 4 % tracks’ loss.

Previous results devoted to this problem have shown that the Interacting Multiple Model (IMM) filtering algorithm8 isthe
most efficient and cost-effective tool for tracking highly maneuvering targets.3.2.10 Additionally the presence of FA and
ECM requires sophisticated data association approaches such as Probabilistic Data Association (PDA) or Multiple
Hypothesis Tracking.3

In the present paper a solution to the benchmark problem based on the combined IMM estimator and PDA techniqueis
proposed. An IMMPDA tracking filter satisfying the benchmark performance criteriais designed. It isrealized by using
appropriate Extended Kalman Filters (EKF) in the IMM configuration, adaptive scheme for track formation and adaptive
radar beam pointing control in order to maximize the revisit interval.

The complete solution to the BP requires the development of the neutralizing techniques for ECM, in particular against a

Standoff Jammer (SOJ). The IMMPDA filtering approach has been naturally extended in 11 to accomplish this task. When
the jammer influence is taken into account, the detection threshold and the radar waveform are adaptively selected to ensure a



constant false alarm rate and a predetermined target detection probability. This methodology isimplemented in the work.

The paper is organized as follows. Section 2 concisely summarizes the idea of the IMMPDA filtering approach to hybrid
system estimation. In Section 3, the concrete implementation of the IMMPDA filter for BP solution is described. The SOJ
neutralizing technique is briefly described in Section 4 and the simulation results are given in Section 5.

2. IMMPDA Filtering of Hybrid Systems

The behavior of a maneuvering target can be adequately described in the terminology of the stochastic hybrid systems. The
base state vector xi{k) < &* of the discrete hybrid system

x(k) = FMK), 2k 10) + GLMI KWk -1, M) 1
2(k) = (k) x(k))+ wik, MY, k=12, (2)

is estimated, where z(k) e R™ is the measurement vector, ikl e R® and wik) e R are respectively the system and
measurement noises, assumed to be white and mutually uncorrelated, with zero means and variances, respectively k) and
Fky . The system (1)-(2) at time k isamong r possible modal states (models), depending on the parameter

Mk e {1, 2, v, r} , Where A4(k) =i denotesthat thei-th system modeisin effect during the sampling interval T ending at

time k. The mode sequence { 44k} is assumed to be a Markov chain with known initial mode probabilities

fml2
4 = P{M(0) =i} and transitional probabilities py; = P{A(k) = j/ Mk —1)=1},i,jeM  where P{ }isthe notation for

probability .

In the presence of clutter several measurements are received from the sensor at timek, i.e. g(}.;) = {zi (;.;)} ’_”[:"] . The aim of
the hybrid estimation isto provide the system state and modal state estimates on the basis of the cumulative set of
measurements 7 * = { z [;.::1} 2.1' In general, suboptimal Bayesian procedures are applied and the final estimate is aweighted

sum of the estimates generated by r working in parallel Kalman filters. In the absence of model uncertainty, the single model
minimum variance estimate of the state is computed by the PDA filterl:

T k) = o Elx(e)| k), 24 P8 k), 2%}
where &%) istheevent that z,( k) isthe correct measurement from the target at k and &% - the event that none of the
measurements is correct. E{ .} isthe mathematical expectation operator. When both model uncertainty and measurement

origin uncertainty are present, the state estimate is given within the framework of the IMM filtering approach by the total
probability theorem:

Hk /) = 3 (0 Bl g k), My, 24 P& () My, 2* 1) P12
or #k /iy = zj;._lf-*'(;.:f iy (k)

where #¥(k / k) isthe output of the j-th PDA filter based on the j-th model and pykc) = P{Mj-|3£} ,J=1,...risthe

conditional posterior probability of mode j. The associated with the estimate error covariance (i / i) takes into account the
effect of the model and measurement origin uncertainties.

3. IMMPDA Filter for BP Solution

A number of mutually connected tasks for precise target tracking are posed in the benchmark formulation. Their optimum



solution minimizes both the radar time and energy. The tracking algorithm involves track formation and maintenance, as well
as the choice of target revisit interval. One solution to these tracking problems is presented here.

The IMMPDA filter is an algorithm for tracking that can realize simultaneously track formation and maintenance. It provides
a quantitative assessments for track termination and tracking capability in clutter. In the present work IMMPDA filter is
implemented only for track maintenance. The track termination is determined here according to the criterion for lost tracks
suggested in 7. A simplified version of track formation is accomplished in view of the specific benchmark problem features.
As aresult the computational load and the radar energy are reduced.

3.1. Track formation

Thetrack formation is a difficult task in the presence of FA. On the basis of the sequence of measurements with a high signal-
to-noiseratio (SNR), atrack isformed by the Least-Squares (L S) method. This technique providestheinitial target state
estimates and the associated covariance matrix. The estimation accuracy, however, greatly depends on the target ranges
which vary from 20 to 100 km in the considered benchmark trgjectories. For this reason the number of the measurements and
sampling intervalsin the LS procedure are determined according to the measured range to the target. In addition, the highest
energy waveform is used for the remote fast targets.

3.2. Track maintenance

The suitable choice of motion models, covering well the whole range of target flight modes, is the first important task in the
IMMPDA filter design. The hardest target maneuvers require lateral accelerations up to 7 g and longitudinal accelerations up
to 2 g. The targets maneuver mainly through turns with the highest intensity (7 g). That iswhy it is proposed here a nonlinear
approximate turn model to be used for the maneuvering segments.2 As the angular rate of the turnsis not known and variesin
awide range, it isincluded in the state vector and is estimated by the filter.

The following set of modelsis suggested for the IMM track maintenance a gorithm:

a No target model (A4 ) takesinto account an undetectable or "false” target. It is usually selected as a second order

model® with low noise level, corresponding to the uniform motion, with atarget detection probability P, = 0. Its
posterior mode probability can be used as a criterion for track termination. According to (1),

FIM Gy x(k - 1] = F[M.x(k - 1)] = Fir, where the state space vector x =[x,#, y,7,z,.2]7 contains the target
positions and velocities in a Cartesian coordinate frame and the matrix F has the form described in 1 (pp- 228),

b. A second order model (44, ) considers the nearly constant velocity (CV) motion of a nonmaneuvering target. It is
usually selected with low noise level and Fy, = [, given by the target’s expected SNR. For the state space vector

x=[x% y,7z2]7 the CV target motion model islinear. According to (1),
FLAM kD, eCh = 1)) = fIA . x(k = 1] = Fx, where the matrix F isthe same asin a

c. A maneuver model (.A45), (F, = ) takesinto account the on-going maneuvers. It isanonlinear coordinated turn

model2 with unknown angular rate ¢, incorporated into the state vector x =[ x,#,y,¥.2,2.a]” . According to the eq.
(1) FIM5, x(k —1)]= flxy, where

F0=[A @ 70 5@ AE)]

2 2
Alx) = [x+ Tx— T?jfw, - Tyw— %i’mz:|,

T T
fg[y)=[y+ v+ ?'xm,jw T;'rm—T_}}mg:|



A2 =[z+ 1% 4, fla)= .

d. A maneuver start / termination model ( Af, ) (M, = 0) for transitional flight segments (between constant speed and

turns), necessary for tracking highly maneuvering targets. It is selected as a second order model with ahigh level of
noise:

JIM ), x(k = 10] = M, x(k - 1)] = Fr ,where x =[x, y,7.z.2]7 and the transition matrix F isthe same asin the
models a. and b.

The second task of the IMMPDA filter design comprises the selection of prior parameters: the process noise variance and the
Markovian transition matrix. In view of the dynamics of the simulated in the BP targets, the standard deviations of the
process noise components for the four models are chosen as:

My o, =2um/ sec’

My o, =28m fsec?

Ty = Max {II], min[c;rf:'s(—jw), TIII] } i gec?

My <oy, = max{l[l, tri 11 [abs(im}, TEI] ] m | sec?

::r1,3a,=15a':rsfsnanz:2

Ty = 0.064 rad [ sec

My, =min{ 507,70} m/ sec®,

where ¥= - fa and J = o arethe accelerationsin the "coordinated turn” model. The matrix &[ Af(k] = G from (1) has
the usual form? in the four models.

The elements of the transition matrix can be chosen as follows2:

[T iR e
BT )= 0l 1= o T )] o dw

where 7 isthe expected sojourn time of the i-th mode. In the present IMM implementation, however, the following constant
values are assigned to the transition probabilities in order to reduce the computational time;

084 002 002 002
o0z D0E3 013 002
002 009 086 003
0.0z 008 020 0770

p:

Theinitial mode probabilitiesaresetto: pf = 01; 47 = pf = p? = 03,
3.3. Measurement model

Since the radar measurements are received in a spherical coordinate system, the measurement vector zcomprises the ranger,
the bearing b and elevation eangles, i.e. z = [y b e:]r . The measurement equation (2) has the form:



a¥ o =
Bx)= |2+ y +2, tanl? tmlﬁj

The nonlinearity in the relationships 1 x) and h{x} imposes the Extended Kalman Filters application in the IMM
configuration.

3.4. Adaptive sampling

An adaptive computation of the sampling interval is needed when the radar resources have to be saved. It is achieved by
using a short sampling interval during maneuvers and along one during nonmaneuvering trgjectory segments. Here, the
sampling interval selection scheme, suggested in 11, is adopted:

. aset A of fixed sampling intervals T is determined;

. forthelargest T, the predicted positions and innovation covariances from the IMM filters are combined,
by using IMM predicted mode probabilities;

. the combined innovation standard deviations gi &7, in bearing and elevation are compared with the

antenna beamwidth in bearing Bﬁ and elevation E , respectively:
o< BlEadsf = BE,
where X, and X, arethreshold parameters,

. if any of these angle deviations exceeds the threshold, the test is repeated for the next shorter T;

. if no measurements are received, the sampling interval T is assumed to be equal to 0.1 sec.

In our implementation the following set of sampling intervalsis accepted:
ﬁ={ 01,0509 1317 21,2529 3337 } .

At first the threshold K, = K,= K isselected equal to X =4 2. If thetarget is not detected, the threshold X is augmented

to the value of 6. During the next subsequent scans, the sampling interval increasesto its maximumvalue I = 37 sec,
(according to the described above logic), and then X isreturned to its ordinary base value of 4.5.

4. Neutralizing the SOJ

The neutralizing technique for The SOJ, presented inll, is realized in the paper. The SOJ motion parameters are estimated by
EKF based on angles only measurements, received at the radar in passive mode. The jammer tracker using azimuth and
elevation angles, their derivatives and a 2.0 sec update rate is implemented? to predict the jammer position. The predicted
estimate of the jammer power level is used for an adaptive selection of the detection threshold in order to maintain a constant
false alarm rate. To maintain the predetermined target detection probability, the radar waveform is also adaptively selected by
an additional assessment of the target radar cross section.11

5. Simulation results
The algorithm performance is evaluated over six standard BP test scenarios.” The well known criteriafor filter performance
are used: the energy and radar time costs,” position and velocity root-mean-square errors (RM SE), computational

requirements, percentage of lost tracks.’

The number of tracks lost is a key performance indicator for afilter, operating in a cluttered environment and ECM. The



main measures of performance, concerning the energy and radar time costs have the form/:

C=F  +eal,. i=12. a=10% a=10%

1 are?

where E_.. isthe average radar energy per second, T, isthe average radar time per second and &; isagiven weighting
parameter.

The results obtained for 200 Monte Carlo runs in the presence of FA and SOJ are shown in Table 1. The average values of
the parameters C';and £, , computed over the six scenarios by taking into account the respective parameters of target 1 two

times (asisrequiredin 7), are given in the last row of Table 1. It can be seen from the results that the realized IMMPDA
algorithm version satisfies the BP requirements for all six target scenarios.

Figures 1 through 6 illustrate the results obtained for the most difficult scenario 6. The waveform adaptation, corresponding
to the selected detection threshold can be seen in Figure 1. The waveform peaks follow the changes in the acceleration
magnitude and the SOJ influence. The sampling interval (Figure 2) islarger during nonmaneuvering phases of motion (

= 3+ 3.6 sec) in comparison to the maneuvering periods of flight (= 15 sec). Therefore, the IMM innovation standard
deviations give a good measure for the confidence of the predicted state estimates. The evolution of the IMM mode
probabilities for one run is presented in Figure 5. The posterior mode probabilities correctly identify the true system mode for
all target scenarios. The rapid response to the changes in the target behavior ensures acceptable RMS Errors. The average
position and velocity RM SE are shown in Figures 3 and 4, respectively. The peak RM S position errors do not exceed 500 m;
the top velocity RM SE are of the order of 250 mvs. The average estimated value of the angular rate, which is a state
component of the maneuvering model, is presented in Figure 6. It is obvious from the simulation results that the performance
of the proposed tracking algorithm is comparable to the performance of the algorithm derived in 11, The average sampling

interval (2.85 s) and the average power (8.24 W) are approximately the same as the respective parameters (2.71 sand 8.6 W)
inll,

Table 1. IMMPDAF performance in the presence of FA and SOJ

Target | Sample | Ave. Pos. V. Cost | Cost L ost
Period | Power | RMSE | RMSE Tracks
(s (W) (m) (m/s) o , (%)
1 291 7.28 115.0 50.27 7.63 | 41.65 0
2 2.88 6.16 100.3 | 5218 | 651 | 40.84 0
3 2.87 10.36 148.7 79.15 | 10.71 | 45.18 0
4 2.91 3.07 45.81 36.55 342 | 37.37 0
5 2.77 15.91 1714 7449 | 16.27 | 51.94 0
6 2.71 7.62 114.8 72.44 7.99 | 44.48 1
Ave. 2.85 8.24 - - 8.60 | 43.31 -
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6. Conclusions



Preliminary results of an ongoing study are reported in the paper. An algorithm is proposed for radar management and
tracking of maneuvering aircraft in the presence of clutter and Standoff Jammer. It is based on the advanced IMMPDA
filtering approach for hybrid system estimation. The performance of the designed agorithm is evaluated by Monte Carlo
simulations. Results obtained over six standard benchmark test scenarios are given. They show that the tracking filter
characteristics satisfy the benchmark restrictions and they are close to the performance of the algorithms, recently published
in the literature.

The further investigation comprises:

. implementation of the idea of the optimal initialization, described in 12;

. replacement of the PDAF with IPDAF for track formation, confirmation and termination;

. replacement of the PDAF with Probabilistic Strongest Neighbor Filter or Interacting 2-model PDAF2;
. implementation of the Decomposition and Fusion Method for handling Range Gate Pull-Off ECM.
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An IMMPDA Solution to Benchmark Problem for Tracking in Clutter
and Stand-off Jammer

Donka Angelova, Emil Semerdjiev, Ludmila Mihaylova and Xiao Rong Li
Keywords:. hybrid system estimation, target tracking, radar data processing

An IMMPDA filtering algorithm is presented for radar management and tracking maneuvering targets
in the presence of false alarms and Standoff Jammer. The performance of the designed algorithmis
evaluated by Monte Carlo simulation. The results obtained over six benchmark test scenarios
demonstrate that the tracking filter satisfy the performance restriction on a maximum allowed track
loss of 4 %, posed by the benchmark problem. The achieved average sampling interval is
approximately 2.85 sec and the average power is about 8.24 W. The paper reports preliminary results
of an ongoing study and further investigation is under way.
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1. Introduction

The Bulgarian National MSDF R&D program was established more than twenty years ago. Bulgarian
electronics and Bulgarian military industry were specialized in development and serial manufacturing of sea
and river radars. Driven by increasing demands for better quality, faster production and minimum costs, MSDF
R& D projects have been constantly developed by research institutes and laboratories of Bulgarian industry and
Bulgarian Academy of Science. The Bulgarian military branch has been especialy interested in keeping
abreast of the latest advancesin thisimportant field to ensure the highest standards and quality for military
electronic systems modernization and upgrade. A number of young men have been educated in leading Soviet
and East European military academies, civil technical universities and research centers, obtaining fundamental
qualification. Since the mid 80’s, the increased capabilities of computer performance provided areliable base
for direct implementation of scientific methods, previously considered as too expensive from computational
point of view. Since then it was realized that the MSDF theory is an independent scientific branch requiring
specia attention and significant scientific efforts. Following this direction, a Multiple Sensors Data Fusion
Department was founded in 1988 at the Bulgarian Academy of Sciences, as R& D Laboratory named
"SIGNAL". The most of research activitiesin Bulgariain MSDF have been redirected from the industrial
research centers toward this new unit. The magjor part of research activitiesin Bulgariain thisfield were
concentrated and accomplished in it. The Laboratory specialized in solving scientific and real-world problems
involving signal, image and other type of data processing, with focus on the Bulgarian industry. It has become
aleader in the design, development and evaluation of algorithms and application software for radar data
processing and tracking systems. A number of R&D product implementations, mainly in the field of multiple
target tracking algorithms (MTT) and related to it fields of simulation, guidance and control, have been
accomplished:

. MTT agorithms and software implemented in meteorological radars (in serial



manufacturing until 1990);

. MTT agorithms and software implemented in a parallel processor system for coastal
radars (in serial manufacturing since 1990);

. mathematical models of signal and data processing systems for Complex Radar CAD
systems (in use since 1988).

. Specialized Mathematical Library for radar data processing systems design and
performance evaluation (in use since 1989);

. mathematical models and application software for Radar Simulators (in use since 1988)

. agorithms and software for unmanned ships collision avoidance systems.

A considerable scientific knowledge and experience has been accumulated in MSDF and especialy in MTT
during its eight-year history. In all these years, constant efforts for transition from defense-devel oped
technologies to civilian government and commercial markets have been made, too.

2. The Current Strategy

The economical situation in Bulgaria after the Currency Board implementation two years ago became stabile
and the success of the reformsis obvious. During this time it has been recognized that the further association of
Bulgariato the Western political, financial, and especially industrial, transport and military structures requires
experts familiar with cutting-edge technol ogies (such as MSDF) capable to transfer knowledge and experience
in Bulgariaand to participate in joint projects. That is the reason the general strategy of the most of research
centers in Bulgaria has changed. The number and staff of the institutes and laboratories in industry and
Bulgarian Academy of Science has been minimized. The strategy of their professional existence has been
changed, too. A serious revision of the purpose and directions of the research activities has been made.

In the area of MSDF, the following directions of activity have been recognized as basic:
. preservation of existing scientific knowledge in the field of MSDF and accumulation of

new one on alevel that keeps the ability of nation to renovate technologically itsindustry;

. provision of expertsin such rapidly changing (in technological sense) fields as
transportation, military armaments and other fields related to the MSDF technologies;

. transfer of new technologies in the mentioned fields supporting the process of transition
of the Bulgarian industry towards western standards and structures.

. education of new generation highly qualified young experts and specialists for the needs
of Bulgarian industry, administration and private business.

Applying these considerations in practice, some important steps have been accomplished:

. thelaboratory has been reorganized and associated as a department named
"Mathematical Methods for Sensor Data Processing” at the Central Laboratory for
Parallel Processing at the Bulgarian Academy of Science, to provide a strong connection
with researchers working in the field of mathematics (mathematical statistics and Monte
Carlo methods) and computer science (parallel and distributed computer architectures);

. theresearch activities have been concentrated (but not restricted) in thefield of MTT;



. some education courses, concerning the implementation of MSDF theory and practicein
Air-Traffic Control, Strategic L eadership and Decision Making, DoD Science, High-
Technologies & Innovations Management have been devel oped from the department’s
staff and arein progressin Technical University in Sofia, Sofia’ s Business University,
Rakovski War College and other schools;

. another area of activity isthe participation in international research projects. Having
experience in thisfield, based on successfully accomplished three R& D projectsin MTT
field for foreign customers (ELTA Ltd. - Israel Aircraft Industry), the Department
management considers this area as strategic.

3. The Team

In 1999 the department personnel consists of 13 researchers: two full professors with D.Sc. degrees, two
associate professors and eight senior researchers with Ph.D. degrees. All specialists have broad knowledge and
experiencein:

. application of theoretic and systems approaches for solving the problemsin tracking
radars,
. developing and applying effective sensor data processing approaches and methods,

. base physical properties of large number of sensors and observed (air, sea and land)
moving objects;

. fields of scenario generation and use of real datafor performance testing, and in the
operator-machine interfaces testing & evaluation and training.

. With classical scientific training and knowledge of advanced computer tools, software
design and state-of -the-art technol ogies, the team provides the best solutions to customer
problems.

4. MSDF Research & Development

Thefield of MTT is an areawhere future joint fruitful collaboration is promising. Our achievementsin this
field relate mainly to tracking methods, algorithms and software devel opment.

Generally speaking, the observed dynamic objectsin our research studies are considered as hybrid stochastic
systems. Such systems are characterized by continuous state and discrete set of unknown control, statistical or
other parameters. A number of algorithms overcoming different kinds of uncertainty about the observed
systems behavior and the ambiguity in the measurement sources, have been developed and their performance
has been evaluated. These algorithms can be separated in five groups:

1. Recursive Pseudo-Bayesian algorithms estimating the hybrid state of a single object, based on the
multiple model (MM) approach.

Recursive Pseudo-Bayesian algorithms associating measurements originating from multiple objects.
Data association agorithms using batch-processing techniques.

Recursive data classification & association algorithms using attribute measurement data.

o~ W DN

Multisource data association algorithms.



The agorithms from the first group include Interactive MM algorithms (IMM)1:10 with fixed structure (FS)1:3
or with variable structure (V S)410 and Generalized Pseudo-Bayesian algorithms (GPB).14 Recently, the FS
algorithms are considered well studied, but we have succeeded in developing precise models of some
commonly observed dynamic systems, improving their overall performance, as well as the performance of the
VS agorithms.1:3.6.7 The development of different adaptive mechanisms, providing on-line adjustment of the
unknown parametersin the IMM VS algorithmsis a second perspective R& D direction.4-10

The "bootstrap” (BS) approach is another promising hybrid state estimation tool, alternative to the above
mentioned ones. |mplementing the MM approach init, aBS-IMM algorithm was devel oped.11.12 |t processes
in real time an immense number of simulated data to identify and refine the pdf of the observed system state.
The algorithm demonstrates good estimation accuracy.

Our further efforts in the above mentioned fields are directed mainly towards generalization of the developed
methods and their application in fault detection, robotics and other fields.6:32

The second group of algorithms comprises versions of the Probabilistic Data Association (PDA) approach and
of the Multiple Hypotheses Tracking (MHT) agorithm. The developed PDA-IMM and BS-IMM-PDA
versions!3:21 demonstrate significant stability in dense clutter environments.

The developed versions of an object-oriented MHT algorithm are the core algorithms of the second group.14-21
Applying the MM approach,14.15 the Hough transform (HT),17.18 applying some heuristic techniques,1> and
incorporating information about measurement features9:.20 an overall improvement of MHT algorithm
performance has been achieved. The results have been implemented in software CAD package, evaluating the
algorithm performance through Monte Carlo simulations (see figures 1-4).
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The mentioned algorithms demonstrate high estimation accuracy in the hard case of maneuvering targets;
significant clutter resistance; better data association and reduced computational |oad.13:18-20 The devel opment
of a software package implementing on-line al these MHT agorithms versions will be accomplished in the
near future.

The proposed batch-processing data association algorithms from the third group are based on the application of
HT asatrack initiator and false alarm filter.17.18.24.25 \We have solved problems concerning the identification
of the connection between the base parameters of the HT algorithm, the sensor's parameters and the customer
requirements related to track initiator performance. Further development of these algorithmsis expected in
their extension as adaptive track detectors and adaptive trackers.

The recursive data classification & association algorithms using attribute measurement data from the fourth
group are based on the combined application of evidence reasoning theory and fuzzy logic. In thisway, some
hard data association problems have been theoretically overcome: the problem of conflicting evidence, the
presence of initial full ignorance in the arriving data, the problem of conflicting assignments etc. The proposed
algorithms provide reliable decisions about the targets identity and affiliation.27-30 The application of the
mentioned combined evidence reasoning theory with fuzzy logic approach instead the Bayesian one and is
considered another promising area of investigation.



The last group of algorithms concerns the multisource data association problem. It has been considered mostly
with the practical aim to find a multisensor track initiation algorithm, resolving the synchronization problem
and the combinatorial explosion arising in realistic multitarget cluttered environment. The development of
multisensor MHT algorithm is another research direction that we intend to study in a greater detail.25

A constant attention in most of the papersis paid to the problem of algorithm performance evaluation. The
Monte Carlo simulation approach has been applied as a main tool to compute standard measures of
performance in standard test scenarios.1:4.10,13,15,18-21

And finally, the problem of practical implementation of MTT algorithms is tightly connected with the required
computational load. The inherent parallelism of some of the considered algorithms has been explored and the
computational cost has been estimated.31-33

5. Conclusion

The brief examination of our strategy and achievements presented in this paper confirms our will to strengthen
the relations with the international M SDF science community. Having in mind the emerging process of
improving the industrial and financial situation in Bulgaria, we find that currently the R&D joint projects are
the most promising opportunity for fruitful cooperation.
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A brief historical view and consideration of Bulgarian strategy and achievementsin the field of
MSDF is presented in the paper. Current R& D projects are briefly described. We examine the
opportunity for joint research and the strengthening of the connections with the international MSDF
science community as apromising area of fruitful cooperation.
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1.Introduction

The moving target detection (for example of aircraft) in disturbed environment is an important radar processing problem. Thistask isto be performed by the
pulse Doppler signal processor. The latter has two basic functions:

. to maximize the detection probability of atarget signal and at the same time maintain a Constant False Alarm Rate (CFAR);

. to estimate the Doppler frequency shift, i.e. to estimate the target radial velocity.
A Doppler processor normally consists of a Reject Filter (RF) followed by a Fast Fourier Transform (FFT) and a CFAR processor. The technique for clutter
suppression commonly in use today is RF based on Maximum Entropy Method (MEM) proposed by J. Burg.L However, for low Clutter-to-Noise-Ratio (CNR)

this technique is not successful. Indeed, as the Power Spectral Density (PSD) of the received signal is already relatively flat due to noise, the MEM filter will not
whiten further the PSD significantly.

For the same reason the use of a MEM matched filtering is quite limited and the classical FFT technique is preferable. However FFT does not perform an
effective matched filtering when the input Signal-to-Noise-Ratio (SNR) is very poor.2

To reduce the degradation of the Doppler filtering in the presence of powerful noise several approaches have been proposed.3 However, they have only moderate
success. Lately, higher-order statistics are finding wider applicability in signal processing.4 In order to improve radar Doppler filtering under the mentioned
condition, MEM algorithm using higher-order statistics is developed and described in this work. The performance of the proposed algorithm is investigated by
means of simulation analysis.

2.Background
Let the received signal z{i) be an additive mix of an echosignal (i} and an independent zero-mean noise #{: ) with variance &2, i.e.
)= A +aft), =0 --E-1 ()]
The received signal is assumed stationary in a broad sense. Its autocorrelation function (ACF) depends only on the time difference, i.e.
R(k)=Ry(k)+ aid(k) k=0L-E-1,

where R, (k) isthe ACF of the echosignal and &%) is the discrete delta function (5[k) = 1 when k= (0 and & k) =0 when & = 0). The normalized ACF of
the received signal is

B (k)= Rk) R (0) = |rB, (k) + (k)i + 1), k=00, B -1 )
where 5, (k)= R, (¥) fRJ,ICU:l is the normalized ACF of the echosignal, r isthe Echosignal-to-Noise-Ratio (ESNR).

The 4y order ACF and the normalized ACF are respectively



z(k) i m=10

Rlk) = E[20)2° (4 4)] o w1 &)

E[Bx[’“-ll ) Bx‘[n—lj] §F  omel

B k)= R (k) R[0) k=01--E-1 @)
For these functions the biased estimation

- Bkl .. .
&“[k) = Z Bxim—lj(i:'Bx(m_n G+ kK (5)

i
is used. This estimation tends to have less mean-square error for finite data records compared with the unbiased estimation

- d=k-L

Bow = %thm-n (l‘:'é;m-n(i +E)IE-k). (6)

Based on eq. (2), it is proved by means of induction that if the ESNR is not very poor the following relation is true

Bou() = By () ~ Cr) (1 1 E™) @)
and therefore

Brul ) = By (k) + O[L/ ™YY, k=00 X -1 8)
If ¥ = o3 then [r) —0 and S’m[k) = EM [k] + o (lf K’“‘l). Consequently, with the increase of the order of the normalized ACFs of the received signal and

the echosignal, their estimations approximate each other. The greater the length of the datarecord is and the greater the ESNR is, the closer they get to each
other. The simulation analysis that has been carried out confirmsrelation (8). When r = —104F, X =321 and m = 3, the estimations .S’m(k] and _S’m[}c:] are
sufficiently close to each other for practical purposes. Better results are obtained when E = fi4 .

Further, given the realistic assumption, that the echosignal model is Autoregressive (AR) with coefficients #[{1, =12 ---p (p =5 3themodel of the
received signal can be expressed in the following way

z|:3']=§‘{ i) (s - ) éam i - 4]+ sft), ©)

where 5{1) is the zero-mean white noise with variance cr_f and a1} are the moving average coefficients. An important relation between the parameters of the
process and its normalized ACF &, [kj exists. It can be achieved as follows. Multiply (9) by z° [:‘ + k) , take the expectation and normalize autocorrelation lags

thus obtained. If the result is multiplied by B;l [:‘ + kj and the expectation is taken again, it becomes evident that for the y;* order normalized ACF the
following relation is true

ﬁ‘[ijm(:i—fj i mis cdd

B, lf)= dzp+l (20)
iﬁ'{fj Byl =) if mis even
i1

[~

Relation (10) gives the AR model of the normalized autocorrelations, given values of the argument { = ¢ + 1. Hence, in order to estimate the parameters of this
model (that in this case are the parameters or the complex conjugated parameters) of the AR model of the echosignal, the MEM can be used.

3.Suboptimal Doppler Filtering Algorithm

In this section suboptimal filtering algorithm for radar Doppler processing, based on the approach described in section 2 is presented. Figure 1 shows a
blockdiagram of this algorithm.



Yn

Noise power
estimation

my, and m,,
. determination

- R

MEM o | m, ACF

RF 1 estimation

J

estimation filter

m,, ACF MEM matched

v

Figurel

The received noise power is estimated in the passive operating mode of the radar. Depending on the noise power level and the power levels of the expected
echosignals the orders of the statistics for the RF input [ ;] and the matched filter input [z,, ) are determined for each range cell. The disturbing signals

%, [k), m=12,---&, received from £ range cells around the testing cell are used for estimation of the 1 ; -order ACF. The so obtained ACF lags

B, k), k= p+1,---& areused to compute the RF coefficients ([}, /= 1,2, --- », implementing the multisegment Burg's recursive algorithm.

Asthefirst step forward and backward sequences f;, (%] and &, (k) areinitiaized as

FulE) = B+ o (8 = By = pg Lo K- Ln =12,

Thefirst reflection coefficient is computed as

5 5 a5, (kb k
:!Z-lk-%H w94 , (12)

Al = i) |

|

M=l Empptl

with ! equal to unity.

A recursive relation for the higher-order reflection coefficients is obtained via the update relations:

fm(}c] = f:_m(k + 1) - pI—lbi—Lx(k"' 1]
k=pp+l.X-1

bya(k) = bryal k) — o1 ()

Thisis continued until 2 = p 5. Thefilter coefficients (/) are then calculated from the recursive relation

1 I=0
()=, a0} P8, a(21): @, (D=1n 1= P
1] = p,

For the testing cell the output of the RF is

(11)

(13)

(14)



By (1) - 2" (1) By (1 -1) o m 35 0xdd

I-l
Z(i)= . iz py+l (15)

By, (i)—ia(f) B, (i = ) if m iz even

By, |f) arethe my -order normalized ACF lagsfor  z[t) = sz} + xlz} , where s{z) is the useful signal and xfz} isthe disturbing signal. The RF output signal is
used for #,,-order ACF estimation. The so obtained correlations are input data for the first-order matched filter. The output of thisfilter isa PSD sequence

Hk) = < - k=0LE-1

2rr{§'aﬁlinjexp[— j%ﬂ]

(16)

where #01=1, F1) iscalculated from (12) for n=1, 1=1, k=67,-K-1 and 4? isthe prediction error power. Formula (16) is the spectral line
expression for different frequencies (velocity channels).

4.Simulation example

The following exampleis used to illustrate the performance of the proposed algorithm. Let the interference be defined by the return echoes from the sea and the
Stand-of-Jammer (SOJ) broadcasting wideband noise. Amplitude responses of the first-order RF for #, =1 (RF1) and for » , = 2 (RF2) are shown in Figure 2.
The numbers of the velocity channels are given along the abscise. The radial velocity of the clutter is determined by the % channel. The CNR is — 35 dE . The

filters coefficients are estimated for K =4 and X = 2. The curves show better clutter rejection for RF2. Besides, the significant pass band irregularity of RF1
can distort undesirably the useful signal.
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\ \
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Figure2 Figure3

Therefore, RF2 isthe preferablefilter. Figure 3 presents normalized spectral lines of the interference second-order ACF before and after rejection. We can see
the RF2 whitening operation.

To investigate the performance of the complete algorithm the useful signal is added to the considered interference. The SNRis — 105 5 . The Signal-to-Clutter-
Ratio (SCR) is — 5.3 dE5 . Theradial velocity of the target (slowly flying airplane) is determined by the second-channel. The line "FFT" on Figure 4 shows the

received signal FFT spectrum, which isrelatively flat. The "MEM"- line shows the tenth-order MEM spectrum of the second-order signal ACF. Estimation of
the echosignal s peaks with high resolution is achieved.

The results of the complete algorithm for ®1, = 2,11, =2 and p =1 are shown on Figure 5. Theline "Target" shows the selected useful signal spectrum and the
line "Noise" shows the residual noise spectrum. The output SNR ismore than 205 . In spite of nearness of the clutter and target velocity channels, the
Improvement Factor (IF) ismorethan 3045 . The so obtained IF value ensures high quality of signal detection.
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5.Conclusions

In this paper a new algorithm for moving target signal selection in the presence of clutter and wideband jammer is presented. The proposed algorithm includes
whitening filter for the interference, followed by a matched filter for the useful signal. This cascade of filtersis based on higher-order statistics approach (namely
higher-order ACF) and maximum entropy pole estimations. The structure of the described algorithm isrelatively simple. It is appropriate for on-line processing.
The algorithm performance is investigated by means of the Monte Carlo simulation analysis. The results indicate that the proposed algorithm is very effective
particularly for short data records. The obtained frequency resolution and IF values ensure high quality of signal detection.

It should be noticed that for relatively long data records the use of cumulants as a higher-order statistics and maximum entropy pole-zero estimations for radar
Doppler filtering is avery promising approach. Future work will focus on developing such atype of adaptive algorithm.
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Algorithm for moving target selection in the presence of clutter and wideband jammer is presented.
The proposed algorithm includes whitening filter for the interference, followed by a matched filter for
the useful signal. This cascade of filtersis based on higher-order statistics approach and maximum
entropy pole estimations. The algorithm performance is investigated by means of the Monte Carlo
simulation analysis. The obtained frequency resolution and improvement factor values ensure high
quality of signal detection.
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1. Introduction

Most tracking filters are based on the Kalman filter equations,! where the tracking system model presumes white
process and measurement noise. In practice, the measurement noise may not be white. Its bandwidth may be on the
order of several hertz. For example, target scintillation (or glint) causes the range and angle measurement errors to
have afinite bandwidth. Another example of correlated measurement error is the radial velocity measurement error
appearing as aresult of radar frequency instability and target velocity fluctuations.

When the measurement frequency is much smaller than the error bandwidth, the errors of successive measurements are
approximately uncorrelated and can be treated as white noise. However, the measurement frequency of some modern
radarsis sufficiently high and the correlation cannot be ignored without tracking accuracy deterioration.

A possible approach to circumvent the effect of colored noise is the target state augmentation technique.l However,
thisyields asingular state covariance matrix, which may be ill-conditioned. A solution to the problem was suggested
first by Bryson and Henrikson.2 They generated a pseudomeasurement, linear combination of two consecutive
measurements, which is corrupted by white noise. In this measurement difference approach the application of the
Kaman filter equations is straightforward. Rogers modeled colored noise as afirst order Autoregressive (AR) process
and applied the pseudomeasurement method to the o= — & filter.2 But in real-world environment the exact prior
information of the AR coefficientsis not known. Wu and Chang proposed a method to estimate the AR parameters by
removing the state variables from the measurements.4 Their method and the pseudo-measurement approach are used in
the Interacting Multiple Model (IMM) filter for maneuvering target tracking.4 Thus, significant improvement is

obtai ned.

The application of the pseudomeasurement method is limited to the case where only position is measured. The case
where both position and velocity are measured cannot be solved by this approach. Gazit2 extends the procedure



suggested in [2] and formulates an optimal filter for tracking nonmaneuvering target without any restriction on the
models dimension. Using this decorrelation approach, a technique for tracking filters design for maneuvering targetsis
presented in this work. A new algorithm for AR parameter estimation is proposed. It is appropriate for on-line
processing and is incorporated into the IMM filter. Two practical tasks are solved: 1) tracking with position
measurements and 2) tracking with position and velocity measurements. The performances of the suggested algorithms
are evaluated by Monte Carlo computer simulation.

The paper is organized as follows. Section 2 concisely summarizes the measurement decorrelation approach proposed
in [5] and marks the IMM algorithm as an effective estimator of maneuvering targets. Section 3 presents a new
algorithm for estimation of AR parameters based on the true state variable removing method.4 The Monte Carlo
simulation results are described in section 4. Conclusions are summarized in the final section.

2. Tracking filter design

Tracking filters have to be correctly designed to obtain best results for a specific practical application. This processis
often a trade-off among quality, complexity and possibility for on-line processing. The filter design comprises the
choice of a measurement error model, the choice of a noise decorrelation scheme and a filtering algorithm, as well as
the selection of their a priori parameters.

A. Measurement noise decorrelation. Consider the following model of alinear dynamic system for tracking with
colored measurement noise>:

xk+ D=Fx(k)+ Gwik)

(1)
el + 1) ="Velk) + n(k)

where x(k) = ™ isthe target state vector, gk} = H™ isthe state vector of the measurement error mode!, wi k') and
7 i) are random noise sequences, assumed to be white and mutually uncorrelated with covariances #( 3 and ¥ k)
respectively. Let target position x; , velocity v, and acceleration @, be components of the state vector in one-

dimensional case: x{k)= (x,,v,,a, )" . Thestate transition matrix &= and the noise matrix (= are determined by the

target dynamics and assumed to be known to the tracking filter. The measurement vector pkye /™ inthe
measurement model

Fliry = Cx(ic) + Lie(k) 2
isalinear combination of x{ ) and e} . The matrix & selects the measured elements of x( ) (for example,
position only, or position and velocity). A state space partition and a reduced order dynamic model are used in [5] to

construct atracking filter without limitations concerning the order of the error model and measurement vector
dimension. The author rewrites the measurement equation in the form:

FUE) =1, (%) +2,(k) 3

where T, (K1eR *» and e, (k1e®R "+ are the measured elements of x(k) and 2(k) . Thus a partition of the state

vectorsis actually formed. It imposes asimilar partition of the transition matrices, noise vectors and their covariance
matrices. Analogous to [2] a new measurement vector is defined:

F )=yl + =Y, p(k) (4)



where '¥, hasdimension (72, x 7, ) and corresponds to the vector ¢, . After appropriate substitutions and
transformations the target and measurement equations are reformul ated:

%k + 1= Fr, (k) + G (k) + w, (k)
®)
J'?r(k] = er{k} + Tﬁ,{k:l

where the deterministic input 1, {4} = pikx) andthe new state vector x, (k) of dimension &2, = #, +#, —#, IS
extended with the unmeasured elements of (i . The form of the system matrices ¥, Z,., & can befound in [5]. The
new process noise w, () and measurement noise #, (k) are now white sequences, but they are mutually correl ated:

Elw,(jm, (7] = 585 - Since the matrix 5" is small (its elements contain the ¢ = 3 degree of the sampling interval
T=005s), w,(k) can be assumed uncorrelated with 7, (%) with slight degradation in performance.” The system

order #, = #, +#, —#, issmaller than the order of the augmented system n, +n, .1 Now the application of the

Kaman filter becomes possible and, consequently, the IMM agorithm can be applied to the case of maneuvering
target tracking with correlated measurement noise.

B. Measurement error model. The measurement error %) is modeled as afirst-order AR process. In that case '} is

the matrix of the AR parametersand (¥’ is a zero mean white Gaussian noise with variance E[#( jim(k)’ = V8 k-
When only the position of the target is measured, then the system parameters are determined as:

ny =L m, =1 x(k)=xgnli=ng, ¥=a' o' =exp(-AT),

where i isthe bandwidth of the measurement noise. =, and the noise variance (gg* ) 4 are two AR parameters which
have to be estimated. When both position and velocity are measured, then:

Ny=1 Me=1 xu(kd=Cxgveds wtk)=(ni, o’ ¥ = diagle”, ")
and o o (ol ), (af )? aresubject to adaptive estimation.

C. IMM state estimation algorithm. 1 The kinematic behavior of a maneuvering target can be suitably described in the
terminology of the stochastic hybrid systems. The aim of the hybrid estimation is to assess the system state and
behavior mode based on the sequence of the noisy measurements. Filtering algorithmsin general consist of operating
in parallel Kalman filters and Bayesian mechanism to organize the cooperation between the individual filters. An
underlying Markov chain is assumed to govern the mode switching. The IMM algorithm is one of the most effective
recent suboptimal Bayesian filters for hybrid system estimation. It provides the overall system state estimate

kMK = Z:._l Fik s k) (&) and estimates its associated covariance matrix F(k / k) asaweighted sum of the

estimates #7 (% / k) and its covariances /7 (k k), formed by » mode-conditional parallel Kalman filters. The

posterior mode probabilities i (k) are calculated on the base of the likelihood of the measurement, received at the
current time step.

D. IMM tracking filter design includes: a) selection of target motion models and their parameters; b) assignment of
transition probabilities of the underlying Markov chain. The motion modes along one of the Cartesian coordinates are
modeled by a second-order kinematic (nearly constant velocity) model for uniform motion and two third-order (nearly

constant acceleration) models for the maneuvers. The process noise standard deviations are chosen after some

simulation experiments as follows: r:r,:. =10m/s* for nonmaneuvering mode and crf, = 00m/s°, crff, =150m/ 5



respectively for the two maneuvering modes corresponding to different maneuver intensities. The Markovian transition
probability matrix is chosen identical to [4] in order to compare the final results.

3. Estimation of AR parameters

A technique that can effectively estimate the AR parameters of the position and velocity measurement noisesis
proposed in this work. Since the measurement (3) contains state variables x; and v, the direct estimation of the #f

and g} parameters (a(k) = (2} ,e;)7) isdifficult. It will be very helpful to remove state variables:

1 2
=%+ Pk_li'"+ Eﬂ'k_lf . Pp=Vr_1+ c:'k_lf, (6)

where @, isthe acceleration of the target. Let £, denotes the true target position (£, = x, ) or velocity (& =w, ).
The following filtering operation is used to obtain anew signal i, that does not involve £ :

i

i i
iy = EC’E(—I}"(E‘;_!- +ef )= Eﬂ(—l]ii_i +EC§'{—1]§2E_E. =

(7)
! i 1 -1
= ZC‘; (-1Yef + ':ﬂ'ﬁ, 1~ )T
whereif & =x,,then] =73 andif £ =v,,then|=2.Thusthez-transform of (7) is:
a2y =1 -z ¥ (2 + miz), miz)= L(z —z aten Tt (8)

-1

Notethat % isan AR process. According to (1) itstransfer function is:

6@ = — 7" @) ©
and Iz} is:
{1 '
#(2) = (2)+ m(z) (10)
[

Passing &Iz through filter with transfer function

T A
where 0 = p =1, the output
_ (1-z7") £ miz)
S 1- efz7l1 - pz 7Y s (1- pz 71y 12



can be obtained. For nonmaneuvering i ,_; = @_; = 1) and maneuvering with constant acceleration
(e —ay_; =) cases, the second term of the right-hand side of (12) is zero. If the value of # ischosen to be one,
Uy, isjust the colored noise #% , i.€.

Here an algorithm based on the Burg's method® is proposed to estimate the AR parameters. Since ¢¢ ismodeled asa
real 1st-order AR process, this algorithm has a simple recursive structure:

dy,
I:I.‘:- = lﬁa.&-—l + zu,l;.uj;_]_: E;:E = ﬁbﬁ-—l + Hi + Hi_l, Ei.'E = E’
(14)

(cf)? = T (ol ¥ = (- @) (o )?

where [ < & =1 istheforgetting factor and &= 1/(1 - &} isthe effective memory. If f islarge, the agorithm

convergence is slow and it cannot respond to the change of ¢ quickly. Advantage of using large # isthe small

estimation variance. On the contrary, small & will let fast algorithm convergence. In this case, however, the
estimation varianceis large. A good compromise between convergence rate and estimation error is achieved for
F=0099,

When the target acceleration is not constant (=, ; - a,_, #07 and p=1 thelow frequency components of xa(z in (12)
will be greatly amplified and u,, will be no longer equal to # . This problem can be overcome choosing & <1 and

using the range of thereal .;:,- values. Thus, if uf; =00 ar. 1}2 the previous scan estimates remain the same. In this
way the parameter estimations are updated when

o {1_3_1)3 £
1(Z) TP rr—— (). (15)

It is clear from (15) that larger 2 will give better results. However, too large values of 2 will amplify the % . From

(8), wefind that % is determined by the target acceleration difference &, | — and sampling period I" . From

Tyt
experienceit is found that the estimates are aimost not affected for p =097 if ¢ =2f and p=000 if ¢ =¢; . But
the estimates are then biased. The biases of the & parameters estimates are significant and cannot be ignored. The
unbiased estimates can be found using the following expressions?:

R (R I (TR P e A (TR PR )
25*3 285

(16)

- A+ (" +oh@")’ (7 + 2o(p® — D@ - (p* + "

—eT 2
A+ oD@ + (20 - 4) T oha v g )

(am)? =



where

g =':D+1:'3=§-3 ={-20% =100 -4 + (-6p0 - D&,
F=(0° -3+ 5 +T) + (8o +8)", (18)
A =_ZD3{EU:IE+{]_ID4:IEU +2.E'

&* and (7 3? are biased estimates denotations. The described AR parameter estimation algorithm has simple

structure. Its complexity estimation includes 44 multiplications and divisions and one square root operation for one
cycleif both position and velocity are measured. The computational complexity of this algorithm is approximately one-
tenth of the IMM algorithm of target tracking.

4. Computer simulation results

The performance of the proposed algorithm isinvestigated by means of simulation analysis. The realized Monte Carlo
simulation model implements the following tasks: simulates the real target dynamics; generates measurements
according to the accepted noise model; implements the algorithm of interest; performs a posterior statistical processing
of the experimental data.

The target motion scenario is chosen as follows. The maneuver lasts from 10 to 30 s with constant accel eration equal
to 40m [ s* (about 4 g). The sampling period 7 is (.05 5. Thetotal tracking interval is 505 (1000 samples). It is

assumed that the standard deviations of measurement noisesare * = 100m and o™ =15m/ 5 . During the
nonmaneuvering period i1+ 105; 31+ 50 5) the coefficientsare: & = exp(—4T)=8187; & = exp(-17)=9512.
During the maneuvering period (11 + 30 5} the coefficientsare: &* = exp(—10T)= 6067 ; &' = exp(-5T)="T7T3% .

Thetracker isinitiated 20 5 before the formal tracking period. The purpose is to investigate the steady state behavior

of the algorithm. One hundred Monte Carlo runs are carried out and the average results are shown under the Root
Mean Sguare Error (RMSE) criterion.

The estimation errors of the correlation coefficients (" #*) and the noise standard deviations [ 7, 77"y are

indicated by the curves on figures 1 and 2 respectively. They show that in steady state the estimate errors of the
parameters are quite small (lessthan 10 %). The results of the parameters estimation when only position is measured
closely correspond to the ones of Wu and Chang?, but the computational complexity of their algorithmis
approximately two times bigger. From the above results we know that the proposed algorithm can estimate the AR
parameters effectively.

To achieve better tracking performance, we incorporate it into the IMM filter for maneuvering target tracking. The
filters performance is examined over the described motion scenario in two cases: case 1 - position only measurements
and case 2 - both position and velocity measurements.
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Thefilters efficiency is evaluated according to: RMSerrors, Peak Dynamic Errors (PDE), Correct Mode
Identification (CMI). In figures 3 and 4 comparative velocity and acceleration RM S errors for tracking without
decorrelation and with suggested adaptive decorrel ation scheme are shown. From these figures we see that the noise
decorrelation improves estimation accuracy, especially in the velocity and acceleration. In case 1 the improvement in



velocity estimation is about 50 % during uniform motion and 30 % during maneuvering phase. For the acceleration
these values are 60 % and 30 % respectively. The velocity measurement incorporation in case 2 additionally improves
the estimation accuracy. In both cases, due to the measurement noises decorrelation, PDES during maneuver on/off
switching are considerably reduced. That can be seen from Table 1 aswell. The evolution of the posterior probabilities
corresponding to the three models of motion is presented on figure 5. It is seen that the IMM filter correctly identifies
the true system mode (the delay in maneuver detection is about 20 sampling intervals).
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Tablel



Filter Noise Position || Velocity Acceleration
[m] [m/s] [V 2]
casel undecorrelated | 89.23 85.33 51.85
decorrelated 76.92 64.00 40.74
case 2 undecorrelated | 46.15 18.66 50.62
decorrelated 40.00 18.60 38.21

5. Conclusions

Tracking filters for radar systems with correlated measurement noise are developed in this work. Two practical tasks
are solved: 1) tracking with only position measurements and 2) tracking with position and velocity measurements. The
noise decorrelation approach and state space partition are applied for tracking maneuvering objects with two-
dimensional measurement vector. A new algorithm based on removing the state variables from measurementsis
proposed to identify the parameters of the colored noise. This decorrelation scheme is included into the cost-effective
IMM filter. Simulation results demonstrate fairly better tracking accuracy compared to the undecorrel ated
measurement errors and almost the same estimation capabilities as in the case of exactly decorrelated measurement
errors. Thefilter structureis simple, practically feasible and suitable for on-line processing. In the measurement
equation, only colored noise which is modeled as afirst-order AR processis assumed. In real applications white noise
also exists in the measurement errors and produces an Autoregressive Moving Average (ARMA) noise process. In this
case, the described decorrelation a gorithm becomes suboptimal.
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Tracking Filters for Radar Systems with Correlated Measurement
Noise

Donka Angelova and Boryana Vassileva
K eywords. data processing; target tracking; adaptive estimation; linear prediction

An agorithm and computer simulation results for radar data processing are presented in this work.
Tracking filter for systems with colored measurement noise is developed. A measurement difference
approach and state space partition is used as a decorrelation scheme. The measurement noiseis
modeled as afirst order Autoregressive (AR) process. A new technigque for adaptive evaluation of the
AR parametersis proposed since in practice they are usually unknown. The realized algorithm, which
Is appropriate for on-line processing, isincorporated into the Interacting Multiple Model (IMM)
estimation algorithm for tracking maneuvering objects. The results from Monte Carlo simulation
show that the suggested algorithm provides almost the same tracking accuracy asin the case of
exactly known AR parameters and better estimation capabilities compared to the undecorrelated
measurement error. The substantial improvement in velocity and acceleration estimation is

particularly useful in missile guidance and situation of abrupt changes in acceleration, induced by the
pilot.
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1. Introduction

During the last years the multiple-model (MM) approach has become very popular and widely applied for
estimation2:2.7.9 and control1.3. 4. 6-8. 10-12 of stochastic systems under different kinds of uncertainty -
unknown model structure or parameters. In the engineering applications different multiple model algorithms
for system control have been proposed.3-19. 11 The greatest number of them are of Bayesian
nature.1.3.4.7.8,10.12 Their common feature is the presence of a bank of estimators providing separate state
estimates required for the overall control synthesis. But, the Interacting Multiple Model estimator - the most

cost-effective scheme for solving various problems for state and parameter estimation,2:2.13 has not yet been
used to solve problems for systems control.

In the present paper an IMM algorithm is designed for control of stochastic systemsin the presence of
parametric model uncertainty. The overall system control isformed as a probabilistically weighted sum of the
control processes provided by separate regulators. Regulators are synthesized for a set of respective models
covering the uncertainty domain. These regulators optimize a quadratic cost function.

The separate state estimates, generated by a modified IMM estimation algorithm and based on the same
models, represent the respective regulators’ inputs. The model probabilities are the weighting coefficients for
the separate control processes, each computed as a full-state feedback. The algorithm performance is
evaluated through Monte Carlo simulation experiments and compared to other MM algorithms for control.

2. IMM algorithm for systems control



The system is described by the model:
i+ 1) = Bk mii + 1 x(i) + G, (ki + D (i) + &, (ke + v, m(i + 1)), (1)
z(i) = Hilcn(e) + wik), 2

where + = & * isthe system state vector, = = i * is the measurement vector; ;; = % ® - the control input
vector; » = g™ and =7 % are mutually uncorrelated, white, zero mean Gaussian noises with covariances

Ly, and L1, respectively. The parameter 1, presents the current system mode. The structure of the model

(1) is supposed known, but its parameters belong to an uncertainty domain and are assumed to depend on
different system modes.

The problem consists in synthesizing a control sequence {u JE_f} , SO that the quadratic cost function

J= M{i[xr(}c} Ot k) + w0 Ru(k}]} , (3)

Kl

isminimized, where £} and R are appropriately chosen weighting matrices (& - positive semi-definite, & -
positive definite) and Af{.} isthe mathematical expectation operator.

Because the accurate system model is unknown, the system is described by a number of models from the
preliminary determined uncertainty domain. The event that the i-th model »1; isactual at time % isdenoted as

my (k) = {mlk) = m; ).

It is assumed that the system model sequence is a Markov chain with transition probabilities

Plwmg (ke + 1) fmy ()} = Pryp(dey and iﬁr;j{k} =1, i=12..q.
J=1

The main functional components of the IMM a gorithm for control are:

. Separate estimators- Kalman filters (KF), running in parallel and providing the input signals (the partial
state estimates) for the regulators,

. Separate regulators, generating the single-model-based control processes.

The control process of the system is computed as a state feedback:

)
u(.i'lf:' = —Z #!'(-E'::'K?-;' (k:mzjf; (k} ’ (4)
i=]



where g arethe IMM mode probabilities, £, ; - the matrices of the regulators working in paralel, %; are
partial state estimates generated by & Kalman filters. The partial regulators are linear quadratic Gaussian
(LQG). The matrices £, ; are computed through minimization of the cost function 7 for each system model

o IIFE- Gz Goi Hy Dys Dy ), = 12,0+-,g with matrices chosen from the uncertainty domain. The
regulators gains are generated by solving the Riccati difference equations.

Theoverall state estimate ;. , generated by the IMM estimator, has the form:

(k) - Zl,-:a ©H©. O
This standard IMM algorithm step for separate estimates combination is excluded here.
Each IMM partial state estimate #; ; ({ =1,2,-+-,5 ) is computed by arespective Kaman filter:
Glk+ iy =Flaglk i)+ G (ou(k),  (6)
U+ k+1) =K+ 1R+ £ (k4 Dy(k+ 1), (7)
vilk+ =z(k+ 11— Hik+ DE(E+ 17K, (8)
Rik + 11Ky = BB/ YF () + G, (D, , ()G, (9
S+ 0= Bk + DR+ 1/, BNk + b+ D, (k+ 1y, (10)
Ek+ D= Blk+ 1/ RAET k+ DS E+1), (11)
EBlh+1ik+ D= B+ IR - E(k+ DS(k+ DE(E+ 1), (12)

where £; (% /&) and %[k /& — 1) arethefiltered and predicted estimates of x(%; v;, &, aretheinnovation
process and its covariance matrix; £, ; - thefilter gain, £ - the error covariance matrix.
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Figure 1: Scheme of theIMM algorithm for control

Figure 1 shows the scheme of the proposed IMM algorithm for control. Similarly to the IMM estimator,2.2.13
the IMM algorithm for control comprises the four major steps:

. interacting or mixing of the state estimates and their covariances, respectively;

. model-conditional filtering, performed in parallel for each mode through a respective
Kaman filter - egs. (6)-(12);

. model probability update, based on the model conditional likelihood functions;

. control combination, according to (4), which yields the overall control process as the
probabilistically weighted sum of the control processes, provided by the regulators.

3. Comparison with other MM control algorithms



The main difference between the proposed IMM algorithm for control with respect to other MM control
algorithmsl.3:4.6.7.8,11,12 reljes on the nature of the I nteracting Multiple Model approach.2:2.13 The main
feature is the dynamic interaction between the single-model filters, obtained by mixing the estimates of all
filters at the previous step and using the mixed estimate as initial estimate for the filtersin the next step. A
very important is the assumption that the transition between the different controlled regimes can be described
asaMarkov process and it is reflected in the transition probability matrix. The presented control algorithm is
compared in the next section with the Multiple Model Adaptive Controller (MMAC), proposed in 812, The
two algorithms are characterized by the same multiple model structure, they are of Bayesian type, but the
mechanism for model probabilities computation is different. A comparison of the IMM estimator for detection
and diagnosis of sensor and actuator failures with the MM adaptive estimator (MMAE)8 is performed in 14,

The multiple model estimator/controller (MMAE/ MMAC)34.7,8,12 uses various heuristic techniques, such as
Kaman filtering retuning and bounded conditional mode probabilities. The effect termed "lockout" of these
probabilities can be observed in the MMAC algorithm. It expressesitself in probabilities going to zero, that is
why an additional lower bound of these probabilitiesis predetermined.

The decision thresholds for moving of the bank of filters/ controllers are also determined empirically. These
techniques enhance the performance of the MMAE/MMAC in an empirical fashion. In contrast to them the
IMM algorithm for control isworking without additional tuning procedures.

4. Performance evaluation

Resultsillustrating the efficiency of the proposed IMM algorithm for stochastic systems control are given. Its
performance is evaluated by Monte Carlo simulation experiments for 100 runs and compared to the MMAC
algorithm performance, presented in 812, The MMAC algorithm isimplemented in the simulation
experiments with an artificial lower bound for the mode probabilities fi,; = 0.001, asimposedin 8. In the

example the overall control for both algorithms is synthesized based on the same steady-state constant gain
regulators.

Example. The proposed IMM algorithm for control is applied to a paper machinel4 producing a super-thin
condenser paper. The state space model of its headbox section14 has the form:

x(k + 1) = Fe(k) + Guk) + G,v(k),

where
08667 I I — 00344 I
F= 0 0.8667 I 3, = 0 - 08877,
01069 — 00503 09000 I I

iz, = I3 and [ istheidentity matrix. The measurement matrix and the noise covariances are:

10 _ .
H=[D g 1) Do =cbag(D16 016 1), D, = dlag(0.09, 0.16).



It is supposed that the system matrix F' isinaccurately known. The model uncertainty domain hereis
approximated by four models:

0.1000 I 0 0.3000 1 I
H= 0 01000 0 |, ;= 1 0.3000 I
01069 —0.0503 09099 01069 - 005035 09099
0.5000 1 I 0.&000 1 1
K= 0 0.5000 I , By = I 0.a000 1
01069 —0.0503 09099 01069 —0.0503 090899

The other model matrices coincide with the true model matrices. The fourth model is the closest to the true
one. The matrices of the quadratic cost function are chosen to provide rapid transient processes of the closed-

loop system: ! =100715, K=0011,.

The IMM transition probability matrix and the initial mode probability vector are chosen :

0997 0001 0001 0.001 14
0001 0997 0001 0.001 {4

Fr= TES .
0001 0001 0.997 0.001 #0)= 1114
0001 0001 0001 0997 /4

The following measures of performance are used:

. therecursively computed cost function .7 (Fig. 2), asinstead of the true state x in (3)
itsoverall estimate # isreplaced;

. the averaged algorithm mode probabilities (shown in Figs. 3 and 4).

It is denoted below: "1" - the IMM algorithm for control and "2" - the MMAC algorithm.8
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In the considered here stationary example both agorithms show nearly equal performance: they quickly
recognize the fourth model as the closest to the true one (its probability is the greatest).

The test scenario has been artificially complicated to evaluate the algorithm performance in the nonstationary
case. In the next scenario abrupt changes arise in elements of the matrix F':

(triie matrix F, for k< 50
F, frsisk <70
F, jor 70 2k <150
m/, Jor k=150

-

The computed cost function . and the mode probabilities are presented in Figs. 5-7.
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In both simulation experiments the cost function of the IMM a gorithm for control is smaller than the
respective MMAC values. The obvious priority of the IMM algorithm for control is due to the faster response
to abrupt changes in the parameters (see Fig.6 and Fig.7). On the basis of the simulation experimentsit can be
concluded that in stationary conditions the results of both algorithms are comparable, but in the nonstationary
case, the IMM algorithm for control yields better overall performance than the MMAC agorithm with respect
to fast response and reliability.

5. Conclusions

An Interacting Multiple Model (IMM) algorithm for stochastic systems control in the presence of parametric
model uncertainty is designed, for stationary and nonstationary systems. It is based on the cost-effective IMM
estimator. The overall system control is synthesized as a probabilistically weighted sum of the control
processes received from separate regulators. These regulators are synthesised for each model from the
uncertainty domain. The overall control process is computed as a state feedback. The well known and cost
effective IMM filter is used for partial state estimates generation. The IMM partia state estimates are used by
regulators working in parallel to compute the partial control processes and the common state feedback. Each
regulator is synthesised based on a quadratic cost function minimization. Results from simulation experiments
are given. The algorithm presented is compared to other MM algorithm for control of Bayesian type. The
simulation results demonstrate that the IMM algorithm for control provides better resultsin the presence of
abrupt changes in the parameters than the MMAC agorithm. The performance of both algorithmsis
comparable in a stationary mode.
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During the last years the multiple-model approach has become very popular and widely applied for
estimation and control of stochastic systems under different uncertainties - unknown model structure
or parameters. In the engineering applications different multiple model algorithms for system control
have been proposed. The greatest number of them are of Bayesian nature. Their common feature is the
bank of estimators providing separate state estimates required for the overall control synthesis.

In the paper an Interacting Multiple Model (IMM) algorithm for stochastic systems control in the
presence of parametric model uncertainty is designed. It is based on the cost-effective IMM estimator.
The overall system control is synthesized as a probabilistically weighted sum of the control processes
from separate regulators working in parallel. These regulators are synthesised for each model from the
uncertainty domain. The regulators are based on linear system, quadratic cost function and Gaussian
noise assumptions. The overall control process is computed as a state feedback. The cost effective
IMM filter is used for partial state estimates generation. The algorithm presented is compared to other
MM Bayesian agorithm for control through Monte Carlo simulation experiments. The simulation
results demonstrate that the IMM control algorithm provides better results in the presence of abrupt
changes in the parameters than the MMAC algorithm. The performance of both algorithmsis
comparable in a stationary mode.
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1. Introduction

The Multiple Hypothesis Tracking algorithm (MHT) is an effective algorithm for moving objects detection and tracking.1.2
Few versions of this complex algorithm are described and evaluated in 1.2:4. |ts measurement oriented version is considered
as the most effective from theoretical point of view, but its practical implementation is limited because of the required
significant computational load in cluttered environment. Several techniques minimizing this load were proposed,1.24 but they
do not provide general solution to these problems. A new problem solution is proposed in this paper. A Hough Transform
(HT) track detector isused for preliminary filtering of arriving false alarms (FA). The tracks detected in thisway are
processed asynchronously with another standard MHT algorithm to include them in the overall MHT scheme. The standard
and the proposed MHT-HT algorithm (MHT2-HT) are evaluated and compared in the paper. The proposed algorithm shows
remarkably good performance in cluttered environment at the cost of delayed track detection process.

2. HT track detector
The Hough transform algorithm (HTA) maps each point from feature space (FS, or the space of measurements) to acurvein
parameter space (PS).35 If aset of pointsin FS lies along a straight line, the corresponding curves intersect in a single point
in PS. An appropriate mapping equation is proposed®:

o=ram(d—oa), ()

where {7, &z} is2-D measurement vector in FS; & and & aretrgjectory shift and heading. Therange » [0z, J andthe
azimuth @ = 10,3607 7) arrivein radar polar coordinate system (' .+ oriented to the "North" direction.



Inthe HTA the trajectory is searched among afixed finite set of A/, Nﬁ trajectories, with the following standard headings

and shifts: ¢, = /56 €[0,360° |,

0,4, ; &8 and dp arethe primary

mﬁpe[ﬂ,;}mm],m

discretization steps of the PS. For each measurement (', &z} HTA consecutively substitutes increasing values of &, to

D?NEI andpm

(0, 7, - the addresses of measurement votes.

olr,ed), §

compute the shifts o,

If the discrete heading coincides with thereal one (&, = & ), the peak of votes will locate the parameters of the real trajectory

(Fig. 1).
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Figure 1: Peak location

, if there are measurement errors, the HTA detects (with some

probability) the standard trajectory with the closest shift and heading instead the real one.

If the real trajectory does not coincide with any standard one or

Appropriate equations determine the HTA accumulator size (£ , A& ) and PS discretization steps as functions of sensor’'s

ey~ N([ZL o7 :I at given probability of successful measurement vote ;.5 They

measurement errors g ~ R/ |[|:|, CF?_) and

define stripsin FS, which shape cover the area of spatial measurement oscillations around known trajectory I;o . 5':1 with a

desired probability F . The false alarms accumulation and the reduction of HTA’s resolving abilities are avoided in this way.

The PS discretization steps [#n, 58] determine the worst case of non-coincidence between standard HT trajectories and an

arbitrary chosen one (& ). The closest accumulator has coordinates:

] .

L
gio
The strip shape is formed asasum of » rectangular sub-strips (corresponding to sub-accumulators { 24, & Li=1,i,)with

],,Dc_.; = S,Dround[

afround i
&

E P13

B,

size (£, 887, where f g



The probability Pg. of the event ‘measurement hitsa strip’ is a product of probabilities corresponding to the independent
events: | £ kez’ and' | fd L kem

P = Prl|#|<ko, | PH{|5al< ko, ) = 405 (k).

The lowest guaranteed £, is:

a0 1 [ &6
Fp 2 FE by )
¢o0F Er:r,,] G[Eu:rm
r ) r b r
B o > b, P + D, P
-.20?'1 \ 20?," | 20,

P =Dyl k- + | b+ —|.

20, ) \ Ecrmj 2a

[ 56 ) [ 58 ) s ]

To choose detection threshold A4 , the probabilities Fprr and Fgrp areintroduced. The first oneis determined as a
probability to obtain exactly {4 measurementsfrom f/ consecutive scans.

Fopf M, W) = [ i;] [PGPEH)MICI - PGPf)N-M

The second probability is determined as a probability to obtain at least one FA per scan in the considered strip in exactly A4
scans from ff consecutive scans:

)}-{N—M}

N uM
- _{1_ pir _ piTF
B M, ) -[ ] [1 (1-27) ] (1- 7 ,
where 7, and [, are considered constant and 1 = ,uI: né ﬂp) isthe number of elementary volumesin the strip. A

suitable detection threshold is chosen to maximize gy, at fixed Fepp.

An additional velocity selection of measurements in each detected track (o, ;) is performed to filter the remaining FA. Let

M, ; measurements are associated with this track. The velocities corresponding to each possible measurement pair are
computed:

_ ]G '305('5'; - oy :l—rj n::os(ﬁ'; - .:;,_-J.:I
'L-’i,j- SF(T: —T:I;l jﬂv

wherei, j =1, M, ;. I = T - moments of measurements arrival, 5 - velocity discretization step. If |zfj_j|E [:fm,rm ]

it votesinaset of n S Z Fow ~ Vin accumulators. The HT track detection is confirmed when the number of
aw
measurements in any of velocity accumulators exceeds threshold A .

3. HT track detector implemented in MHT



The standard MHT measurement oriented version is described in 2. The track initiation procedure takes place in following
cases:

. Casel (C1): at thefirst scan;
. Case 2 (C2): when a measurement does not fall in any gate of existing tracks;

. Case 3 (C3): when MHT considers every measurement in a gate of each track as a potential track.

A HT track detector (initiating rectilinear trajectories) is proposed to filter the FA in cases C1 and C2 before the application
of the standard MHT tracks initiation procedure. The application of this procedure in case C3 is a source of redundant tracks,
but here it isleft unchanged as an effective tool for recognition and resolution of closely spaced tracks.

A description of the proposed algorithm isgiven in Fig. 2 (the standard MHT steps are written in italic, the new steps are
written in bold). The algorithm starts with aHTA measurement accumulation. If atrack is detected all measurements
accumulated in the corresponding accumulator during the last 27 scans are processed scan-by-scan, by second standard MHT
algorithm. Its purpose isto initiate and evaluate a new standard MHT cluster containing MHT tracks and hypothesesiin it.
This procedure is performed in the remaining time of the current scan frame. Because of this second MHT algorithm (used in
paralel), the resulting MHT agorithm version is denoted here MHT 2-HT. Finally, the new cluster is added to the others and
starting at the next scan it is processed in standard way.

First scamn:
Read basic input data & first scan daia;
-HT initiation & ehservation accumulation;
Nexi N-1 scans:
Read the nexi scan data
-HT abserwvation accumiilation;
Next scans after the first N ones:
-Fead the nexi scan data,
-Dealate ald abservations assaciated to fracks farm HT accumilators;
-HT absemwations accumulation;
-HT track detection & velocity selection;

---If an ocbhsarvation falls in the track gate of this clusier & in a track gate from anoiier ona:

—--Maikce super cluster fram these clusters.

-—-If an absarvation is out of all gates, then make a new clustar;
-For each ald cluster:

--For each ohservation in the cluster:

-—-Far eack khyvpothesis in the cluster:

—-Far each track from the hypoihesis:

————— I ihe ahsarvation falls in the track gate:

—————— I ihis track-observation pair is not encountered vei:




——————— Create a new track from this pair;

—————— Add a new hyvpathesis with a new track in the cluster;

—-Maice @ new frack from the current abssrvation;

—-Add the new frack to the above hypothesis;

—-Leave first M! inpotheses & prune oibers;

—Combine tracks (closaly spaced ar made up of one and the same cbservaiions);
—Combine ypatheses made up af one and the same fracks;

—Leave best MZ inpatheses & prurne athers;

--Filter all iracks in the clusier;

—If a« HT track is detected:

—use standard MHT to create a new cluster af iracks & hypotheses;
—dd this cluster to already exisiing ones;

—spifit clusters if possibie;

-Delete clusters with no tracks in them.

Figure 2: The MHT2-HT algorithm version
3.1. Measures of performance

A variety of measures of performance are formulated for MHT agorithm performance eval uation.2 To estimate the noise
resistance of the compared algorithms, just measures of performance depending on the clutter density f:j.,cl are considered
below. They are computed on the basis of the Monte Carlo ssimulation at scenario consisting of 7, independent runs. Within
an experiment, for a given performance parameter ', the sample mean ;T,é over £ runsisrecursively computed.2

The following measures of performance2.6 are computed, at each scan &, for the experimental data gathered for each MHT
cluster, from its best hypothesis:

. Expected number of tracks A,, - sample mean over L runsof the number of tracks &, ( &,
number of Tentative and Confirmed tracks at scan ).
. Expected number of deleted tracks I, : sample mean over 7 runsof thedifference &, — M, .If

My <M, itisset 0.

. Expected number of falsetracks I/, - sample mean over £, runsof thesubtraction &, — M, (M -
the number of targetsin track at scan jg).

. Probability of at least #/ confirmed tracks without later deletion a{;: a sample mean of the number of

the occurrences of the event [ N2z N} in L runs( A, isthenumber of confirmed tracks existing
till the run end).

4. Performance evaluation
4.1. Algorithms parameters

A standard Extended Kalman Filter is used in both MHT versions. It is based on the nonlinear mode!

Kpam = A T Ty ain gy s



Toorm = 5+ Tvg cos gy s
Frae — Fe
Veslw = Vi

where the state vector x* = ( ¥, v] consists of target coordinates, heading and velocity. Theinitial values X, Iy, j#;
and v, are known. The radar sampling interval is T . No process noise is considered.

The measurement equationis: z, = ;glzxkj].y Vg

NreEs?
y x| isthemeasurement matrix, and v, ~ (0, R} is

arctgn— + 4 —

x 2

0
awhite Gaussian measurement noise with covariance matrix & = [ “r ] .

where: z* = (7, 2} isthe measurement vector, ,Eg[ In) =

|'_72

@

The probability of a new target appearance in an elementary volume, the detection probability of appearance of FA inan
elementary volume are chosen equal for both algorithms:

BY e = P <4107, B = R _ pI _ 9, Bp - BT =107,

It isalso set for both algorithms: gate size - 16; number of hypotheses retained after each observation M1 = 8; number of
hypotheses retained after each scan M2 = 4; expected track length - 60 scans. In MHT2-HT it isalso chosen &7 = i and

At =4 . The number of HTA accumulatorsis chosen &V » I, = 27 x 140 = 3780 The velocity selection is performed
in 8 accumulators at velocity bounds: v, = 0/ = and v, = 20m/ 5.

4.2. Simulation

Resultsfrom 7 = 100 Monte Carlo independent runs are obtained from common simulation model and scenarios. Each run
lasts 35 scans. The scenario includes two closely spaced ships rectilinearly moving on crossing trajectories:

Ship X, [k ¥, [k # 10 vy [mis]
1 3 4 35 16
2 2 4 45 16

The measurement errors are modeled as Gaussian distributed zero-mean random variables with covariance 7 = 100#2 and
= (1.3% . The measurement misses are modeled with: £, = (.2 . The number of FA is modeled as random variable with

binomial distribution along the # axis, depending on £, and on the sizes of the elementary volume ( £ =100 s,
M= 19). Two scenarios with different flows of FA (moderate - Pfif’“’ =5-107" and dense - Pffgk =1-107) with
uniformly distributed coordinates are considered. The surveillance region which sizeis E[U,l 4 km] . e[IZI,EIIII ? ]
contains 160x90=14400 elementary volumes. The sampling interval ischosen T = 105 .

4.3. Simulation Results



The mesasures of performance obtained for the standard MHT at P;j‘" (denoted by "1") and Pﬁ"g" (denoted by "2") and

their values for the newly proposed MHT2-HT algorithm at ijfgﬂ (denoted by "3") are presented by Fig. 3 ~ 6. They
illustrate the superiority of the proposed new a gorithm:
. Ny, Ny, Ny While Pj’;ig” generally deteriorates the performance of the standard MHT algorithm,

the MHT2-HT algorithm shows a remarkable noise resistance - its plots obtained for F#*  coincide

with these obtained by the standard MHT algorithm for P;:“’ .

. Bﬂ : The standard MHT algorithm shows increased "noise" probability ,_E;jﬁ at Pfﬂ = P;ﬂig& dueto the
increased number of false tracks, while the competing MHT2-HT algorithm considerably reduces this

probability: ﬂ%(MHTE - HT, Pi®) « EL,(MH?: piov).

Both algorithms provide P:d =1,i=12 and ﬁ‘; =[], for al considered Pﬁ.

Figure 3: Average Target Number }/, = Nt(Pﬁjl
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Figure4: Average Track Number I/, = N#(Pfﬂ)
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Figure 5: Average Deleted Track Number 7/, = Nﬂ(Pﬁ)
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Figure 6: Average False Track Number Nﬁ = Nﬁ(Pﬁ)

5. Conclusion

A new version of the standard MHT measurement oriented algorithm is proposed and evaluated in the paper. A Hough
Transform track detector isimplemented in MHT to filter arriving false alarms. The measurements included in such tracks are
arranged in MHT tracks by second, standard MHT algorithm used in parallel. The new MHT2-HT algorithm shows a
remarkable performance and noise resistance at the cost of delayed track detection procedure.
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Multiple Hypothesis Tracking Using Hough Transform Track
Detector

Emil Semerdjiev, Kiril Alexiev, Emanuil Djerassi and Pavlina Konstantinova

Keywords. Multiple Hypothesis Tracking, Hough Transform

A modification of the standard Multiple Hypothesis Tracking (MHT) measurement oriented algorithm
version is proposed and evaluated in the paper. A Hough Transform track detector isimplemented in
MHT to filter false darms. The measurements belonging to already detected tracks are arranged in
MHT tracks by another standard MHT algorithm used asynchronously. At the cost of delayed track

detection this MHT2-HT algorithm shows remarkable good performance and noise resistance.
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1. Introduction

Tracking of manoeuvring targetsis a problem of a great practical and theoretical interest. The real-world
tracking applications meet a number of difficulties caused by the presence of different kinds of uncertainty due
to the unknown or not precisely known system model and random processes’ statistics or because of their abrupt
changes. Z2.9 These problems are especially complicated in the marine navigation practice, 7. 14. 15, 19 where the
commonly used simple models of rectilinear or curvilinear target motions do not match the highly non-linear
dynamics of the manoeuvring ship. A solution of these problems isto derive more adequate descriptions of the
real ship dynamics and to design adaptive estimation algorithms.

Such a solution is proposed in the paper. A new ship model is derived in Section 2 after an analysis of the basic
hydrodynamic models. The derived model isimplemented in a new version of the Interacting Multiple Model
(IMM) tracking algorithm - the most cost-effective multiple model algorithm for hybrid estimation. 3.6. 10, 11
The proposed model and tracking algorithm are presented in Section 3 and evaluated in Section 4.

2. Model identification

Results of astudy, described in 16.17. 18 gre summarised in this section. It should be noted that the high
complexity of the hydrodynamic processes caused by the ship motion in deep and confined water and the wide
variety of ship forms and sizes lead to various non-stochastic ship models. These models can be divided in two

groups: precise models, topical for particular ship forms and sizes (the Sobolev, 19 Cubic, 1 Quadratic 13 and
MMG 14 models) and models with greater generality but lower accuracy (the Pershitz 15 and Nomoto 12
models). Here, the widely used continuous-time (CT) Pershitz model 15 is chosen as a basic model to assure a




good trade-off between complexity and accuracy:

dX

E:KFE:’ESW(‘F—,S:" (1)
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The state vector of the considered CT model is r = [ X Vw5, F]' . It includes the ship coordinates and
heading, rate of turn, drift angle and velocity; & isthe control rudder angle deviation. The constants ¢, 741,
Sa1, . @31, By and s, are hydrodynamic coefficients depending on the ship geometry, most of all, and on

the ship length L . 20 Equations (3) and (6) illustrate the main feature of the considered dynamics - the non-
linear dependence between the rate of turn and the velocity of the ship. Thisisthe main difference between the

presented model in this paper and other well-known simple models. 2.5.9

Very often in the available literature sources 15.20 this model is simplified by substituting the factor | ﬁ| with an
off-line computed factor:

_—gt xqug +4}21r315|5|
- 2hyr) |

By

Where: g = g%, — d37%1, & = 183, — %515 - 1hen, the system of two first-order differential equations

consisting of equation (4) and the modified equation (5) is transformed in two independent second-order
differential equations, omitting the negligible second-order derivatives:

doy I* I
2p——tge—t+a5,5=0; 4
P P qmﬂ 31 )
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dt ¥,

where p = D-j(ﬂ?gl +’"31:|' ¢ = &~ @ @1 = doy + b, - Thefinal CT model (1)-(3), (4) and (6) is
obtained by setting fi=10.

The respective discrete-time (DT) moddl is:

Ky = &y v TV, sim ey (7)
T =Ty + TV cos (8)
Wl =¥y, +ﬂﬂ;[ﬂﬁ, +0.5TeV [ — O )‘fmrJ’ ©)
Oy = 2™ + 01— 277, (10)
Vo=V Ky =V (14190080 T (12)

where

~05p 025774 oy = 2 o [t SenlS ] {E}
I

¥ L 7
and k=1,2,---; T isthesampling interval.

The full coincidence between the results obtained by the CT model (1)-(6), and these obtained by the derived
DT model (7)-(11) is demonstrated in 7. Model (7)-(11) is used for true data generation in further simulations.

Thefinal DT model, suitable for implementation in Kalman filter, is composed on the basis of the assumptions
17, 18-

. Itisassumed that the observed ship maneuvers with a constant rate of turn:

. The whole domain of unknown control parameters L., is replaced by aset of three control parameters
corresponding to the three basic kinds of ship motions: rectilinear motion (£2,), left and right turns (
Ld, and L1;):

0=[0.0,,0:] =[0,U-0],

where [T denotes the preset constant rate of turn. The vector {3 coversall possible ship



manoeuvres and system noises in the band [U,—U] . The particular choice of T ismade by
taking into account general considerations from the marine practice and some important
international navigation restrictions.20

. The attempt to introduce respective vector of possible ship lengths has been recognised in 17 as
unsuccessful because of bad distinction of the resulting models. The uncertainty, concerning the ship
geometry has been overcome by introducing a constant average ship length / = cawmst L7

So, the final version of the requested ship model takes the following general form:
X = F 2. S0.0), 121,23,
where x, = [;fk, }idifs;i’ru,:;]l and where:
Hign = Aip TV gstn g, (12)
Y= Lip + TV pacosiey (13)
Wige = Wig T TV pabds, (14)
Vi = KpiVog (15)
where

Ky =1+19002, 0-=[0,,0,.0,] =[0,U -]

Another model, based on the extended state vector x; = [;f!-‘k, ¥ Vi ﬂﬂj‘k]' is suggested in 18. The
corresponding extended ship models (i =1, 2,3) have the form:

Higr = L TTV, pminir g, (16)
Yipar= Tip + TV 008y, (17)
Wi = Wi T TVl +AQ ), (18)
Viwa = £y Vs (19)

ALY g = AL, (20)

where ¥, = |[1 +1,9g‘gf;3)'1. It takes into account possible differences AL2;, between the unknown true



value of the ship rate of turn £, anditsvalues £2; fixedinthe IMM algorithm. Theinfluence of ALY ; onthe
velocity is not taken into account because of itsinsignificance.

3. IMM algorithm for tracking of manoeuvring ship

Models (12)-(15) and (16)-(20) are expanded in 17 in Taylor time-series up to first-order terms around the
estimated state vector. They are used in an Extended Kalman Filters (EKF) and respective IMM algorithms. The
IMM algorithm based on model (12)-(15) is denoted as IMM-A and the proposed IMM a gorithm based on
model (16)-(20) is denoted as IMM-B.

The measurement equation has the form:

Fo=Hog+wg,

1 000
H= ’
[nlnn}

w, isawhite Gaussian measurement noise with covariance matrix K .

where 5 isthe measurement matrix,

For convenience, the polar measurements "range-bearing” y, = ["s-, ) ﬁk]' , are transformed here in Cartesian
Oones:

Xp=resinfl,, I =r.cosfi .

So, the measurement vector acquires the new form y . = [ X, }’E]' . Respectively, the covariance matrix of the
measurement errorsis &:

r:rf sir” e+ rf CT; cas? i) (crf - rf ini,)smﬁh cas
For = ( 1 _ 2

el % Jﬁ) sin & cos f7, r:rf cos &+ rf .::-'E sip oy ’

where , and &, arethe standard deviations of the range and bearing angle.

The equations of the 1 th (i =1, 2,3) EKF are;
Kiwin = i T K prin

fz',mm =1 [%i,ﬁ;.-'krﬂi,"’? J

Yie = Ve — i, X kik-1



Raim-1= 'ﬁﬂxﬁ,k-m-l(ﬂle :
Sin = Hzﬂmx-lﬂil + 5 g

Ks,s; = E,M.t—l‘ﬁﬂl Sa',_ 51 ’

I ik = I kik-1" Ki,k'g},kﬁ ;;,5; .

L L

Here, X, and X 4,y arethefiltered estimate of the state x, and its one-step prediction; ¥;, and 5;, are
the filter residual process and its covariance matrix, £, ,; isthe error covariance matrix, £, isthefilter gain

matrix, ¢ =1 isthe fudge factor.

The Jacobi matrix Jf; = ﬂ computed based upon the model (12)-(15) has the form:

E‘iri X =F
1 0 ﬂ’%,j;nmw}i,k, TEy; Sm!i}i,s;_
£ o 01 =TV g sin , THy comwy |
oo 1 TR0y |
00 I Ky
the one based on model (16)-(20) is:
(1 0 T¥, cosi,  TKysing,, 0]
=00 1 TRy, (0 + A ) Thaa |
0o I Ky I
00 0 0 I

A hard logic is introduced in both IMM algorithms to avoid undesired combination of the estimates ¥, , ¥, ;

and 3 17
‘T;E,s; =ﬁ1h (1=2.3),
Ve =Vir, i g >03,

where £ ; isthe probability of the event: "the 7 th model istopical at time & ", E:i isthe overall estimate of the
ship velocity.

4. Performance evaluation



The performance of both IMM algorithmsis compared by Monte Carlo simulations.2 Results for 100
independent runs, each one lasting 200 scans (600s, T =3s) are given.

The simulation parameters of the true model (7)-(11) are standard 29.17; g4; = 0.331, r4; = -0.629, 541 = -0.104,
Iy =35, g31 =-4.64, r5; = 3.88, 53, =-1.019,L.=99m, &, =73°, &, = 30°. Thechoseninitia conditions are:

Xy = I =10000m, y, =45+, ¥, = 30 m/s. Initially the ship moves rectilinearly. The applied pulse-wise
rudder angle control law is:

5 {Em, k €[51,67]

0, k E[ﬂl, ﬁ?"] '

The true ship trajectory is presented in Fig.1.

2.5

W, [m]

1.5 |

Figure 1. Thetrue ship trajectory

Both considered IMM algorithms a use constant ship length [I=69 mfor each of the three models, control
parameter F = 0.0066y,~ (360 ° fmix) and fudge factors ¢ = @ = 1.03. To compute the measurement error
covariance matrix, it is preset: a, = 100m, <, =0.3® . Theinitial error covariance matrices X , theinitial
mode probability vectors .« and the transition probability matrices Fr are chosen asfollows:



A4 4 5 9 9 4 B4 5] 9 A A 4
Eﬂ—dmg[a'x Ty T, crpr}, ‘E‘D—dmg{a'_}: Ty O, O r:rm},

0.95 06 02 02
pat=pgfolonzs| pi=pmi=0505 0
0.025 05 0 05

Ty =dy=a,, T, =0.1" ,a,=10m, o, =0.01rzd/ m.

The Monte Carlo simulation results are shown in Figs. 2-13. Genera estimation of the algorithms' performance
isgivenin Fig.2. The IMM-B agorithm possesses better consistency during the manoeuvring stage.

These inferences are confirmed by results received for the mean error (ME) and the root mean square errors

(RMSE) of the state vector 2 (Figs.3-6 and Figs.7-10). The average mode probabilities are presented in Figs.11-
12. The computed ME of the estimated IMM-B control parameter changeisgivenin Fig.13.
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Figure 2: Normalized Estimation Error Squared
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5. Conclusions

New models adequately describing the non-linear dynamics of maneuvering ship motion are proposed in the
paper for manoeuvring ship tracking. They are implemented in a standard and in newly designed IMM versions.
The proposed new IMM uses extended state vector and model to compensate the difference between the fixed
control parameter of the currently used IMM model and itsreal value. The performed Monte Carlo simulations
show excellent model fit and estimation performance.
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Interacting Multiple Model Algorithm for Manoeuvring Ship
Tracking Based on New Ship Models

Emil Semerdjiev, Ludmila Mihaylova, Tzvetan Semerdjiev and Violeta Bogdanova
Keywords. marine targets tracking, model identification, adaptive hybrid estimation

Tracking of manoeuvring targetsis a problem of agreat practical and theoretical interest. The real-
world tracking applications meet a number of difficulties caused by the presence of different kinds of
uncertainty due to the unknown or not precisely known system model and random processes' statistics
or because of their abrupt changes. These problems are especially complicated in the marine
navigation practice, where the commonly used simple models of rectilinear or curvilinear target
motions do not match to the highly non-linear dynamics of the manoeuvring ship motion. A solution
of these problemsis to derive more adequate descriptions of the real ship dynamics and to design
adaptive estimation algorithms. In the paper a new ship model is derived after an analysis of the basic
hydrodynamic models. This model isimplemented in anew version of the Interacting Multiple Model
(IMM) tracking algorithm - the most cost-effective multiple model algorithm for hybrid estimation.
The proposed new IMM uses extended state vector and model to compensate the difference between
the fixed control parameter of the currently used IMM model and itsreal value. The performed Monte
Carlo simulations, show excellent model fit and estimation performance.



MULTI SENSOR DATA FUSION

by Edward Waltz and James Llinas,
Artech House Radar Library, ISBN: 0-89006-277-3, 464 pages, 1990

Thisbook is devoted to arapidly developing area of research and devel opment, which involves
significant integration of a number of research disciplines. The initial acquaintance with multisensor
data fusion technology surprisingly involves more interdisciplinary relations than expected.
Communications and decision theories are related to epistemology and uncertainty management.
Estimation theory, digital signal processing and computer science are applied in parallel with artificial
intelligence.

The book gives a thorough introduction into the taxonomy of functional architectures of the
multisensor data fusion systems and defense applications. Contemporary sensors, sources and
communications links are presented and sensor management is depicted. Data fusion for state
estimation is separately discussed in the context of target tracking applications. An important part of
the book covers military concepts of situation and threat assessment. The discussion on
implementation approaches for situation and threat assessment is very useful for all specialists
working in this area. They will find in the book data fusion system architecture design guidelines, how
to model such systems and how to evaluate their performance. The emerging role of artificia
intelligence techniquesis aso presented.

Thisbook is an important introduction to multisensor data fusion technology and its application in
military command, control, and intelligence operations. The presentation is given at a system-level. It
could be useful to all specialists working in the area of data fusion and C4 systems development.

INFORMATION WARFARE PRINCIPLES AND OPERATIONS
by Edward Waltz
Artech House Radar Library, ISBN: 0-89006-511-X, 380 pages, 1998

The book presents a system engineering-level introduction in the field of Information Warfare. It
provides an overview of the emerging threats in the information space to commercial, civil, and
military information systems. It describes how these threats can be identified and how contemporary

C4 systems can be protected.

An important part of the book is devoted to a detailed consideration of components, principles,
technologies, and tactics of the information warfare. Three areas critical to success are studied:
Information Dominance, Information Defense, and Information Offense. Their comprehensive
discussion provides engineers, system operators and information technology users with an



understandable overview of the quantification of information, and with deductive and inductive
processes that create knowledge. An essential technical background in data mining is given here. All
information security technologies are thoroughly discussed including encryption, authorization, and
attack detection. In addition, possible information attack technologies, including physical,
infrastructure, and perceptual methods, are also analyzed. The book could be of interest for all
specialists working in the area of C4l systems development, as well as to students of information
warfare and information operations.

BAYESIAN MULTIPLE TARGET TRACKING

by LawrenceD. Stone, Carl A. Barlow, ThomasL. Corwin,
Artech House Radar Library, | SBN: 1580530249, 300 pages, October 1999

The book is devoted to one of the currently most popular areas of theory and practice — Multiple
Target Tracking. The well known problem in this areais related to the significant uncertainty in
regard to the relevance of the used stochastic models, and the correctness of their application for
target position and motion prediction over time. Most of the up-to-date target tracking approaches
result in algorithms, which are effective in presence of high amount of data and significant rates of
their accumulation. Unfortunately, very often in reality thisis not the case. Facing real world
problems, the authors focus their attention on the case of low data collecting rates and low signal-to-
noise ratio, which is the most wide spread situation currently.

Having in mind that in electronic warfare environments most of the sensors provide ambiguous
information about the number of targets and their state, the authors propose Bayesian inference
approach as basic theoretical framework for design and development of effective tracking algorithms.
Following this path, a general solution of the tracking problemsin conditions of insufficient sensor
resources is developed. Thus, the use of Bayesian inference framework provides a base for successful
design and development of mathematically sound algorithms for dealing with up-to-date tracking
problems involving multiple closely spaced targets, multiple netted sensors, and multiple moving
platforms. Respectively, such powerful tracking method as non-linear Multiple Hypothesis Tracking
Is thoroughly discussed. Also, the Theory of Unified Tracking approaches is presented as a promising
instrument for successful development of multiple target tracking algorithms in cases of critical
uncertainty.

The book contains many illustrative examples, concept descriptions, and specific algorithms. Cases
with nonlinear target behavior models, non-Gaussian measurement error distributions, low scanning
rates, low signal to noise ratios and multiple closely spaced targets are under special consideration.
The authors treat a number of topics such as the problem of multiple target detection and tracking; the
case for the Bayesian inference; single target tracking; Bayesian filtering; Kalman filtering; discrete
Bayesian filtering; classical multiple target tracking; general multiple hypothesis tracking; classical
multiple hypothesis tracking; multiple target tracking without contacts or association; general multiple
target model; relationship to multiple hypothesis tracking; the theoretical foundations for likelihood



ratio detection and tracking; as well asimplementation issues.

The book might be of significant interest for students, specialists and professionals working in field of
reliable situation and threat assessment on the base of effective multisensor data fusion. It will be
especially useful for people searching effective procedure for crisis, conflict and collision avoidance,
conflicts prevention and crisis management on the base of reliable data processing. The approach
offered in the book for dynamic objects state estimation and prediction in case of significant volatility,
uncertainty, complexity and ambiguity is an effective instrument for solving real world problems.

MULTITARGET/MULTISENSOR TRACKING:
APPLICATIONSAND ADVANCES-VOLUME |11
by Yaakov Bar-Shalom and William Dale Blair
Artech House Radar Library, Approx. 460 pages, Availablein July 2000

The book is a significant addition to previous fundamental authors' works in the area of Multisensor
Multitarget Tracking. It provides the most up-to-date available information and guidance to
development of new practical and effective solutions for sensor data processing systems. For people
searching for innovative solutions it discusses the most important contemporary problems of advanced
target tracking applications, giving the reader a chance to be in touch with the forefront of this
professional area.

In particular, the book presents the modern viewpoint on multisensor tracking problems, on the
allocation of insufficient resources, and on advanced hardware and software development. A thorough
consideration of assignment techniques for multitarget data association is presented. It includes the
incorporation of the Nearest Neighbor Joint Probabilistic Data Association algorithm into the
Interacting Multiple Model estimator. It a'so considers non-linear filtering for fusing target’s
kinematic state measurements and target’ s signature measurements. A Variable Structure Interacting
Multiple Model (VS-IMM) estimator combined with an Assignment algorithm for tracking multiple
ground targetsis thoroughly discussed. The effective use of MTI data obtained from an airborne
sensor is studied and the obtained results could be of great interest for professionalsinvolved in radar
data processing.

The book includes an in-depth discussion of techniques, related to corrupted radar tracking
performance. It presents ways of modeling and simulating ECMss, using computers. A detailed signal
processing model is proposed to help sonar/radar waveform optimization for reliable tracking. A
comprehensive introduction to variable structure estimators is provided and an accession of their
practical applications is made.

The book covers practical aspects of multisensor tracking and sensor resource allocation; survey of
assignment techniquesfor MTT; IMM estimator with nearest neighbor; joint probabilistic data



association; tracking; closely-spaced, deformable objects; tracking for Ballistic Missile Defence; joint
target tracking and identification: an application of nonlinear filtering; ground target tracking with
topography-based variable structure IMM Estimator; radar signal processing for tracking; optical
sensor signal processing for tracking; modeling of electronic countermeasures for multitarget tracking
and data association; sonar/radar waveform design for optimal tracking performance; engineer’s guide
to variable structure estimators for tracking.

The book will be of great interest for designers and systems engineers, involved in sensor data
processing for wide area of application. It could be especially useful for professionals, engaged in
R& D of multisensor data fusion algorithm for conflict prevention, collision avoidance and crisis
management in air, ground and sea applications. Also, it could be of interest for specialists applying
dynamic objects state estimation in variety of public safety ensuring systems.

SENSORS FOR PEACE

APPLICATIONS, SYSTEMSAND LEGAL REQUIREMENTSFOR MONITORING IN
PEACE OPERATIONS

Editors: Jurgen Altmann, Horst Fisher and Henny van der Graaf
United Nations Publication, New York, 1998, | SBN 92-9045-130-0

The book is devoted to one of the vital problems of peace operations. monitoring of situations and
threats in unstable, uncertain, complicated and deceptive environments. The main goal of the authors
Isto analyze the use of unattended ground sensor systems in four important areas of application, and
to provide recommendations on the employment of sensors in peace operations. The importance of
this publication is unguestionable. There is no clearer example of practical effectiveness of the system
of multiple sensor utilization and its potential contribution to increasing international security. But in
our point of view, the most valuable contribution of this publication are lessons learned in the sensor
system utilization during difficult times of particular peace operations.

The presentation begins with thorough consideration of operational aspects of the use of sensorsin
peace operations. It clearly shows how sensorsfit into different tasks carried out by peace forces, and
how sensor systems and personnel requirements interact. Special attention is paid to the use of sensors
under various circumstances, i.e., in mobile tasks such as patrolling. Very useful isthe presentation of
operational requirements cost estimation and organizational set-up. Using many tables with technical
characteristics and rich illustrations, the authors introduce the reader into the essence of the sensor
systems information fusion and the specifics of their application.

An important evaluation of the Questionnaire on Application of Ground Sensors during peacekeeping
Operations is presented next. The study covers up-to-date technology capability utilization, systems
optimization, and efficiency improvement. It describes capabilities provided by systems already
available on the market. The cost of such systems and their development are specified in detail.



The legal aspects of ground sensor utilization in peace operations are discussed at the end of the book.
International law aspects are carefully investigated and the need for new rulesin regulating the sensor
systems implementation is confirmed.

Finally, a set of important conclusions and recommendations are formulated. Options for decision-
makers and policy recommendations for United Nations, as well as for contributing states are given.
Thus, the book may be regarded as an important study, which establishes close connections between
multisensor data fusion and security issue. It will be useful for specialists, working in the area of
multisensor data fusion engineering applications.



INFORMATION FUSION TERMINOLOGY

Information Fusion encompasses theory, techniques and tools conceived and employed for exploiting
the synergy in information acquired from multiple sources (sensor, databases, information gathered by
human, etc.). The objective isthat the resulting decision or action isin some sense better (qualitatively
or quantitatively, in terms of accuracy, robustness etc.) than it would be possible if any of these
sources were used individualy, i.e., without exploiting synergy. (B. V. Dasarathy, Dynetics, Inc.)

In the process of fusion events, activities and movements are correlated and analyzed as they occur in
time and space. The purpose isto determine location, identity and status of individual objects
(equipment and units), to assess the situation, to determine qualitative and quantitative characteristics
of threats to coalition operations, and to detect patternsin activities that reveal intent or capability.
Specific technologies are required to refine, direct and manage the information fusion capabilities.

In relation to Multisensor Data Fusion, Multi-Sensor Collaboration is performed as an innovative
technical approach, which is engaged to eliminate limitations in the current capabilities of sensors.
Sensor collaboration technology must address ground, airborne and spaceborne systems and processes
in afully distributed environment. A special goal isthe development of a predictive intelligence
assessment of the warfighter's battlespace situation.

Data Fusion is a process dealing with the association, correlation, and combination of data and
information from single and multiple sources to achieve refined position and identity estimates,
complete and timely assessment of situations and threats, as well as their significance.

Often, data fusion is accompanied by sensor management. A sensor management system is any
system which provides automatic control of a suite of sensors or measurement devices. In general, a
sensor management system must answer the following four questions: 1) What sensor? 2) Which
service? 3) Where to point? 4) When to start? The sensor manager output is a schedule defined over
an interval of time where each entry of the schedule is a scheduling vector containing the answers to
these questions.

In practice, Data Fusion is aformal framework in which are expressed means and tools for the
aliance of data originating from different sources, and for the exploitation of their synergy in order to
obtain information whose quality cannot be achieved otherwise. More philosophically (B. V.
Dasarathy, Dynetics, Inc.) - "When you borrow information from one source, it’s plagiarism; When
you borrow information from many, it’sinformation fusion"

Concerning multisensor fusion, the general problem can be restated as: how isit possible to observe a
dynamical scene with a set of sensors by controlling their configuration, i.e. their sequencing, as well
as the scheduling of the resources, be they directly attached to the sensors or centralized. Evaluating
the reliability of different information sourcesis crucial when the received data reveals some
Inconsistencies and we have to choose among various options. In fact, the reliability of the source
affects the credibility of the information and vice-versa. It is necessary to develop systems that deal
with couples (information, source) rather than with information alone.



Decentralized distributed detection and decision fusion systems attract significant interest due to the
Increasing need to employ multiple sensors for surveillance, intelligence and communications. Some
of the motivating factors are the natural advantages of distributed detection over centralized detection:
reliability, survivability, increasesin required coverage of surveillance, and reductionin
communications bandwidth.

One purpose of Sensor Fusion is to realize new sensing architecture by integrating multi-sensor
information and to develop hierarchical and decentralized architecture for recognition such as human
beings further. As aresult, more reliable and multilateral information can be extracted, which can
realize high-level recognition mechanism.
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Central Laboratory for Parallel Processing

The Central Laboratory for Parallel Processing (CLPP) was established in 1985 as a Coordination
Center of Informatics and Computer Technology (CCICT). The main idea was to coordinate research
in the field of Computer Science and Computer Technologies conducted by scientists from the
Bulgarian Academy of Sciences, Bulgarian universities and R& D institutes closely connected with
industry, aswell as to promote international cooperation in the area of theoretical and practical
problems of the new generation of computers. Special emphasis was placed on the following issues:

. high performance computer systems and algorithms for parallel processing

. distributed computer systems

« computer networks

. intelligent man-machine interface, etc.
Annually, the scientists from the Laboratory publish approximately 140 papers, and about hundred of
them are published in refereed international journals and proceedings of high quality international
conferences. In 1996, CCICT was renamed as Central Laboratory for Parallel Processing. CLPPis
headed by a Director, a Deputy Director and a Scientific Secretary. Currently, Prof. D.Sc. Ilvan Dimov
is Director of CLPP. General and scientific policy of the Laboratory isformulated by Board of
Directors, including all Department heads, and the 24-member Scientific Council. Currently, the
CLPP consists of a Computer Center and six departments:

. Distributed computing systems and networks

. Parallel agorithms

. Scientific computing

. High performance computer architectures

. Linguistic modeling

. Mathematical methods for sensor information processing.
The Department of Distributed Systems and Networ king was founded in 1985. It is chaired by
Prof. Dr. K. Boyanov, Corresponding member of the Academy of Sciences. Main areas of research
within the department are:

. Network Protocols

. Paralle and Distributed Heterogeneous Computing Environments

. High Speed Local Area Networks

. DataMessaging

. Broadband communications



. Pardlél interpretation of object-oriented programs

. Dynamic load balancing in distributed systems

A concept of distributed computer architecture with reconfigurable communications interconnection
was developed. Based on this architecture several high performance computers with modular structure
and up to 64 processors were constructed. Architecture allowing flexible use of high-speed networks
has been suggested. The department is coordinator of the Bulgarian Academic Network. The studies
accomplished in the Department are aimed at the creation of a methodology for effective parallel
interpretation of wide range of applications which would merge the advantages of parallel processing
and the specification of user applications by means of graphical (diagrammatic) high level object-
oriented language. Currently, the Department of Distributed Systems and Networking participatesin
severa international joint research programs such as ACTS, NATO Science for Peace, aswell asin
bilateral reasearch projects on parallel algorithms. Its staff consists of one corresponding member, two
full professors, three associate professors, eight research fellows, and four support specialists.

The main research activities of the Department of Parallel Algorithmsarein the following areas:

. New efficient paralel algorithms;

. Monte Carlo algorithms (differential and integral equations, linear algebra,
spectral problems, data processing);

. Fractal methods for image processing;
. Computational geometry and topological graph theory;

« Applications of parallel algorithms and supercomputing (large-scale problems,
parallel and/or vector computers, clusters of workstations).

The Department of Parallel Algorithms participates in several international joint research programs
financed by the Commission of the European Communities, NATO Science for Peace and other
sources.

The Department organizes a number of international scientific meetings - conferences, workshops and
seminars. The traditional IMACS Seminar on Monte Carlo methodsis jointly organized by IMACS
and the Central Laboratory for Parallel Processing.

The Department of Parallel Algorithms employs one academician, one full professor, four associate
professors, six scientific researchers, and one supporting specialist.

The Department of Scientific Computing was founded in 1997. The major objectives of the research
activities of the Department are as follows:

(i) to develop new efficient numerical methods which are robust with respect to the
problem and method parameters, and which can also perform efficiently on modern
computer systems, including parallel ones;



(i) to implement the developed agorithms and to create software tools, aswell asto
test them on benchmark problems close to the advanced requirements of real-life
computer simulation practice.

Currently the Department of Scientific Computing participates in several international joint research
programs financed by EU, NSF-USA, Volkswagen, etc. The successfully finalized in 1998
Copernicus Project "High Performance Computing in Geosciences. Safety of Constructions with
Respect to Rock Deformations and Movements' represents the abilities of the group from the
Department of Scientific Computing to perform high level research in an interdisciplinary
international research team.

The Department organizes the biannual Workshop on "Large-Scale Scientific Computations”.

The Department of Scientific Computing numbers two associated professors, two senior research
fellows and one supporting researcher.

The High Performance Computer Architecture (HPCA) Department at the Central Laboratory for
Parallel Processing was founded in 1998 at the Bulgarian Academy of Sciences and is chaired by
Prof. Vladimir Lazarov who led High Performance Systems and Parallel Algorithms Laboratory
existing since 1986. The research and development areas cover:

. Computational Models;
. Advanced Computer Architectures;
« Computer Simulation of HPCA.

The department staff consists of eight researchers: three associate professors and five senior
researchers.

The Department of Linguistic Modeling was set up in 1987 as Linguistic Modeling Laboratory. The
formation of the Laboratory was intended to meet the modern trends in the research and application of
natural language processing. The Department's main tasks are:

. Computer modeling of basic fragments of the Bulgarian language - lexical and
grammatical resources. A computer dictionary of Bulgarian (70 000 units) was
prepared in two versions.

. Computer modeling of Slavonic languages. (Computer dictionary of Russian -
100 000 units).

. Computer processing of multilingual resources (Bilingual aligned Corpora base
Iscompiled for French-English, French-Bulgarian and English-Bulgarian
parallel texts: 2.5 Million words).

. Methods and tools for knowledge based machine aided tranglation (System for



machine-aided human translation with generation of explanations in natural
language).

The Department of Linguistic Modeling have actively participated in twelve international projects.

The personnel of the Department of Linguistic Modeling enlists nine researchers, two of them being
associate professors and five research fellows.

The Mathematical Methods for Sensor Data Processing Department (MM SDP) at the Central
Laboratory for Parallel Processing (CLPP) isfounded in 1988 at the Bulgarian Academy of Sciences.

It specializesin solving complex theoretical and practical problems involving sensor data processing
for Bulgarian Ministry of Education and Science, Ministry of Industry, Ministry of Defense, Air
Traffic Control Authorities, and Sofia Technical University.

Employing modern mathematical approaches and high performance computers, the researchersin the
Department provide R& D products for solving basic problems of sensor data processing systems:
automation, performance improvement, initial operator education and training. The efforts of the
research team are directed both to new applications and to technological upgrade of existing sensor
data processing systems. Significant experience in developing and applying effective sensor data
processing approaches and methods for real-time multisource kinematic and attribute data correlation,
association, estimation and fusion is accumulated. The main R&D areas cover the following
directions of real-time sensor data processing:

. Multiple Sensor Multiple Target Tracking (track initiation, measurements data
association, measurements and tracks fusion)
. Stochastic systems identification and hybrid estimation

. Automated collision warning/avoidance in navigation conflicts (object’ s optimal
control)

. Pardlel MTT algorithm design and implementation.

In 1999, the department consists of 13 researchers: two full professors, two associate professors and
seven senior researchers. Two of them have D.Sc. degrees and nine have Ph.D. degrees.

More information on Central Laboratory for Parallel Processing is available at its Web site;
http://www.acad.bg/
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