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Ductile deformation - Concepts of finite strain 

Deformation includes any process that results in a change in shape, size or location of a body. A solid 
body subjected to external forces tends to move or change its displacement. These displacements can 
involve four distinct component patterns:  
- 1) A body is forced to change its position; it undergoes translation.  
- 2) A body is forced to change its orientation; it undergoes rotation. 
- 3) A body is forced to change size; it undergoes dilation. 
- 4) A body is forced to change shape; it undergoes distortion. 
 

 
 
These movement components are often described in terms of slip or flow. The distinction is scale-
dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement 
that involves the whole of the rock. 
The four basic movements may be combined. 
- During rigid body deformation, rocks are translated and/or rotated but the original size and shape 

are preserved. 
- If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then 

cause particle displacement within the body so that the body changes its shape and/or size; it 
becomes deformed. Deformation describes the complete transformation from the initial to the 
final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In 
ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. 
Instead, brittle deformation essentially involves relative movements between undeformed (but 
displaced) blocks. 
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Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses 
between parts of a body. Therefore, stresses and strains are interdependent. Particle displacements 
produce dilatation (change in size, positive for expansion and negative for shrinking) and/or 
distortion, a change in shape. The final shape, after cumulative strain(s), is what geologists can 
observe. The strain is a geometric concept intended to quantify the relative displacement and 
subsequent change in the configuration of the particles in a given dimension of the body, i.e. 
measuring strain is quantifying deformation from an “initial” shape to a “final” shape (both initial 
and final may be intermediate steps of a longer deformation evolution). A strain analysis consists in 
quantifying the changes in shape and size due to deformation. Thus, strain analysis involves 
determining the (1) strain orientation, (2) strain magnitude, and (3) patterns of strain variation. The 
finite strain is the measurable parameter that assigns a quantity to the total change in the shape of a 
deformed object compared to its original shape. Hence, the strain is a dimensionless measure of the 
amount of flow. This information helps in understanding the physical displacements that produced 
structures found in the field. In practice, dilatation is very difficult to measure so that geologists 
usually speak of strain for distortion only. 

Strain analysis 

 Homogeneous - heterogeneous strain 
The concept of finite strain is useful for uniform and homogeneous deformation.  

Definition  
The strain is homogeneous if all parts of a body suffer distortion and/or dilatation characterized by 
the same amount, type and direction of displacement. Standard criteria are that: 
- Straight and parallel lines and planes remain straight and parallel.  
- All lines in the same direction in a body undergo the same extension and rotation.  
- Circles become ellipses. Spheres enclosed in the unstrained body become an ellipsoid. 
The strain is heterogeneous if distortion and/or dilatation differ from place to place in the body. 
Straight lines and planes become curved and parallel lines and planes do not remain parallel; circles 
and spheres become complex, closed forms. 
 

 
 
This definition emphasizes the important difference between strain and structure. Structures such as 
folds or veins would not exist without the presence of “layered” heterogeneities, i.e. the juxtaposition 
of dissimilar materials. One may reduce heterogeneous deformation to homogeneous domains by 
decreasing the size of the studied volume. A homogeneous deformation on one scale may be part of 
a heterogeneous deformation on a different scale. Heterogeneous strain distributed with different 
characteristics in different parts of a rock or rock mass is partitioned. Consequently, structures and 
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strain refer to different reference frames, possibly geographical for structures, local for strain: the 
fabric of the rock, which includes foliation and lineation. 

Continuum assumption 
Strain compatibility is a requirement for the rock to remain coherent during deformation. However, 
lines and planes may also be broken during heterogeneous and discontinuous deformation. Strain 
variations can be due to the different mechanical behaviors of components of a rock or association of 
rocks. For example, the presence of relatively rigid components can result in more intense strain 
concentrated into weaker parts of the rock rather than being evenly distributed. Strain analysis in 
rocks is essentially dedicated to homogeneous and continuous deformation, on the considered scale. 

 Progressive deformation until the finite strain 
Progressive deformation refers to the series of movements that affect a body from its initial 
undeformed stage to its deformed state. Progressive deformation can be continuous or discontinuous. 

Deformation path 
The state of strain of an object is the total strain acquired by this object up to the time of 
measurement, i.e. the sum of all different shapes and positions it has undergone. The sequence of 
strain states through which the object passed during progressive deformation defines the strain path. 
Deformation paths follow successive stages during straining and are expressed relative to an external 
coordinate system. Each step that can be identified, i.e. each tiny division of the deformation path is 
an increment. The amount of deformation that occurs from one stage to the next is an incremental 
strain. 

Infinitesimal strain 
Each increment can be divided into a series of smaller and smaller increments. When the duration 
tends to zero, the extremely small amount of strain is termed infinitesimal, also described as 
instantaneous. We will see that the orientation of instantaneous strain axes may be very different 
from that of finite strain axes. 

Strain history 
The strain history is the sum of many strain increments, each of which having infinitesimal 
(instantaneous) characteristics. It is impossible to reconstruct if the strain is perfectly homogeneous. 
Rock masses are heterogeneous, so that different parts register different parts of the strain history. 
The challenge is to combine these parts to understand the whole deformation evolution.   

Finite strain 
The sum of incremental strains, i.e. the total strain is the finite strain.  
Although all states of strain result from progressive deformation, the finite strain does not provide 
any information about the particular strain path that the body has experienced. A variety of strain 
paths may lead to the same finite strain. 

Measurement of strain 
If an object is deformed, the deformation magnitude depends on the size of the object as well as on 
the magnitude of the applied stress. To avoid this scale-dependence, the strain is measured as 
normalized displacements expressed in scale-independent, dimensionless terms. As a change in 
shape, the strain may be measured with two quantities: 
- The change in length of lines: the linear strain or extension 

 

ε. 
- The change in angle between two lines or a line and a plane: the angular strain or shear strain 

 

γ. 
Any strain geometry can be measured as a combination of these changes. The corresponding terms 
are defined as follows. 

 Length changes  
Two parameters describe changes in length: longitudinal strain and stretch. 
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Longitudinal strain 
The extension 

 

ε is given by the dimensionless ratio: 
 ( ) ( )0 0 0 1ε = − = −      (1) 
Where 0   is the original length and   the new length of a reference linear segment in a rock mass. 

If 0>    0ε >   A positive value indicates elongation. 
If 0<    0ε <   A negative value indicates shortening.   

 

 
 
This measure of how many percents a line gets longer or shorter is also termed engineering strain, 
in particular for laboratory experiments.  
For an infinitesimal strain, we consider the one-dimensional deformation of an extensible axis Ox. P 
is a point at Px  from the origin O. When stretching the axis P comes to P’ and POP ' x x= + ∆ , with 

x∆  being a linear function of x if stretching is homogeneous. Taking P very close to O, equation (1) 
becomes:  

( )x x x x x xε = + ∆ − = ∆    
The infinitesimal deformation at P is per definition 

x 0
xlim

x∆ →
∆ ε =  

 
 

which is commonly written: 
 d /ε =    (2) 

Stretch 
For large-scale deformations, the change in length of a line is generally given by the stretch S, which 
is the deformed length as a proportion of the undeformed length: 
 0S / 1= = + ε   (3) 
The stretch is also used to define the natural strain, which is the logarithmic strain ( )ln S= . 

Quadratic elongation 
The quadratic elongation λ  is the standard measure of finite longitudinal strain. It is the square of 
the stretch: 

 ( ) ( )2 2
0 1λ = = + ε   (4) 

Zero strain is given by 1λ = . 
The reciprocal quadratic elongation 1′λ = λ  is used sometimes. 
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 Angular changes - Shear strain 
Angular shear 

The angle ψ called angular shear is the change of an original right angle (i.e. the amount a vertical 
line has been rotated with respect to a horizontal line): 

 ψ = 90° − α( ) (5) 

The sense of shear is anticlockwise or clockwise depending on the sense of angular change. 

 

α is 
measured between two initially perpendicular lines. Therefore 90 90− ° ≤ ψ ≤ + °  

ATTENTION: anticlockwise and clockwise means sinistral and dextral, respectively, 
only and only when shearing refers to strike-slip movements. Otherwise, the sense 
depends on the direction of observation. It is then safer to specify top-to--. 

The difficulty in rocks is to identify two lines that are known to be initially orthogonal. 

Shear strain 
The shear strain γ  is the tangent to the angular shear: 
 tanγ = ψ   (6) 
 

 
 
The tangent of a very small angle is equal to the angle in radians so that for infinitesimal strain ψ = γ
. 
In Cartesian coordinates γ = x y∆ . This equation shows that shear strain involves an interaction 
between the coordinate axes. 

 Area - Volume change 
The volume change (dilatation) is given by: 

 ( )0 0V V V∆ = −  (7) 

where V and V0  are the volumes in the deformed and undeformed states, respectively. In two-
dimensions, volume V is reduced to area A. 

There is expansion if 0V V> . 
There is contraction if 0V V< .  
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For infinitesimal strain A dA A∆ =  and, in three dimensions   

 

∆V = dV V. 

 Strain analysis 
The strain analysis consists either in finding the longitudinal and shear strains where principal strain 
axes are known, or inversely in finding the principal strain axes where the longitudinal and shear 
strains can be measured for various directions. The latter option, using deformed objects, is most 
common in geology. 

Graphical representation 
A diversity of methods has been designed to estimate finite strain in tectonites (rocks whose fabric 
reflects the deformation history). Using mostly the distortion of objects (e.g. ooids and fossils) or 
point distributions (e.g. quartz grain centers in quartzites) all methods try to estimate the shape and 
orientation of the strain ellipse/ellipsoid. 

 Strain ellipse 
For the sake of clarity, we first think in two dimensions. 

Definition 
A circle of unit radius (but it can be of any size) and flattened vertically parallel to the coordinate axis 
is homogeneously deformed into an ellipse with two major axes which, initially, were diameters of 
the circle. This strain ellipse is a two-dimensional, graphical concept to visualize the amount of linear 
and angular strain involved in the deformation of rock. The radius of this ellipse is proportional to 
the stretch in any direction. Its longest and shortest radii, known as the principal strain axes, define 
the strain ellipse. In the considered coordinate-parallel flattening, these axes are vertical (short) and 
horizontal (long). 
Three numbers only define the two-dimensional strain of the plane in which the ellipse lies: 
-The dimensions of the strain ellipse.  
-The orientation of the principal strain axes and  
From equations (3) and (4), saving the subscript 2 for the intermediate axis of the three-dimensional 
case: 

The length of the long principal strain axis, the stretch axis, is 1 11+ ε = λ  

The length of the short principal strain axis, the shortening axis, is 3 31+ ε = λ . 
The orientation is usually the anticlockwise angle between the abscissa and the longest principal strain 
axis. 
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There are two strain ellipses at any stage in the deformation: the finite strain ellipse represents the 
cumulative, total deformation; the infinitesimal ellipse represents the strain for an instant in time. In 
two dimensions, the infinitesimal stretching axes are the instantaneous direction of maximum 
elongation and the instantaneous direction of maximum shortening. They are therefore the lines that 
experience the fastest and slowest stretching rates of all possible line orientations at the considered 
increment. 
In all cases the strain axes are perpendicular. They are also lines of zero shear strain. 

Shape 
The shape of the ellipse is the ratio of the principal axes: 

( ) ( )1 3R 1 1= + ε + ε  (8)  

It embodies the overall intensity of distortion. A graphical representation consists in plotting 11+ ε  
along the horizontal axis and 31+ ε  along the vertical axis of a scaled coordinate system.  
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The diagonal line is the locus of ellipses that remained as circles because they have undergone equal 
elongation or equal contraction in all directions, i.e. 1 31 1+ ε = = ε . No ellipse plots above this line 
because 11+ ε  is always greater or equal to 31 = ε . Two more particular lines can be drawn: one 
vertical for which 1 0ε =  and one horizontal for which 3 0ε = . These two lines delimit three fields 
below the diagonal, where all possible strain ellipses are represented. 
- The highest field (below the diagonal and above the horizontal line 31 1+ ε = ) includes ellipses 

in which both principal strains are positive elongations.  
- The rectangular field below the horizontal line and to the right of the vertical line includes 

ellipses in which 1 0ε >  and 3 0ε < . 
- The triangle below the diagonal and to the left of the vertical line includes ellipses in which both 

1ε  and 3ε  are negative shortenings.  

Dilatation 
The area of the strain ellipse is the product of the principal axes. 

( )( )1 31 1 1+ ∆ = + ε + ε  

Dilatation Δ is positive if the area increases, negative if it decreases. 

Change in length as a function of the orientation of a line 
The finite strain ellipse concentrically superimposed on the unstrained circle yields four intersection 
points. The two lines joining opposed points through the center have suffered no net change in length: 
those two are the lines of no finite longitudinal strain. By symmetry, the finite strain axes bisect 
these lines. All lines in the two sectors containing the longest strain axis increased in length, all lines 
in the sectors containing the shortest strain axis shortened.  
 

 
 
For the first infinitesimally small increment of the considered vertical flattening, the two lines of no 
incremental longitudinal strain are inclined at 45° to the strain axes. With further flattening, the two 
material lines of initial zero longitudinal strain turn towards the horizontal axis while the strain ellipse 
lengthens along this axis and flattens along the vertical axis. Yet, at any given time during 
deformation, lines within 45° of the horizontal axis are lengthening and lines within 45° of the vertical 
axis are shortening. Therefore, some material in the strain ellipse migrates through lines separating 
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fields of shortening and lengthening as the ellipse flattens. The strain ellipse is consequently divided 
into fields in which material lines have had different histories:  
- Within 45° to the vertical axis, lines have been shortened throughout their deformation history. 
- Between the 45° line and the rotated initial lines of no finite longitudinal strain, material lines 

have undergone an initial shortening, followed by lengthening. 
- Between the lines of no finite longitudinal strain, symmetrically with respect to the horizontal 

stretch axis, lines have been permanently elongated. 
Note that for extremely large strain, these lines will tend towards fusion with the long axis. Besides, 
lines of no finite longitudinal strain do not exist if the strain involves negative or positive dilatation 
because then all lines have negative or positive stretch, respectively. 

Application 
If an initially circular structure becomes elliptical after deformation, the two main axes ( )1k 1+ ε  

and ( )2k 1+ ε  can be directly measured. k  is a constant, since the size of the original circle is 
unknown. The slope of the regression line through many long axis / short axis measurements gives 
the ellipticity R  of the finite strain ellipse. 

Rotational component of deformation 
The only rotation considered in two-dimensions is around an axis perpendicular to the plane of 
observation, hence perpendicular to the two strain axes. 
The rotational part of deformation ω  is the angular difference in orientation of the strain axes with 
respect to a reference line. One commonly uses symbols as θ  and 'θ  for orientation angles before 
and after deformation, respectively. 

'ω = θ − θ  
 

 
 

 Strain in three-dimensions: strain ellipsoid 
We use and derive in three dimensions measures of strain analogous to those in two dimensions. 

Definition 
In a ductilely deforming medium, the material flows from the high-stressed to the low-stressed 
domains. At a scale at which deformation can be considered to be continuous and homogeneous, 
natural deformation in three dimensions is described as the change in the shape of an imaginary or 
material sphere with a unit radius r 1= . This unit sphere becomes an ellipsoid whose shape and 
orientation describe the strain. The equation describing this ellipsoid is: 

( ) ( ) ( )

2 2 2

2 2 2
1 2 3

x y z 1
1 1 1

+ + =
+ ε + ε + ε
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The three principal axes of this finite strain ellipsoid are the maximum, intermediate and minimum 
principal strain axes designated by X, Y and Z, respectively when lengths can be measured to define 
the strain magnitude. From equations (3) and (4), these lengths are: 

1 1X 1= + ε = λ  ≥ 2 2Y 1= + ε = λ  ≥  3 3Z 1= + ε = λ  

respectively, since the original sphere has a radius of 1. The longest axis X is the stretching axis, Y 
the intermediate axis, and Z the shortening axis. The shear strain is zero in the direction of these three 
axes. Deformation in which linear extension of the three principal strain axes is non-zero ( )X Y Z≥ ≥  
is triaxial. Planes that contain two of these axes are principal strain planes. 
 
The strain ellipsoid is the visualization of the second-order strain tensor. 
 

 
 
The lines of no finite longitudinal strain in the strain ellipse correspond to two planes of no finite 
longitudinal strain (no stretching, no rotation) in the strain ellipsoid.  
Cross-sections of the strain ellipsoid are ellipses (but there can be circular cross-sections). In general, 
the way we determine the 3D strain ellipsoid is to saw up rocks to define surfaces on which we find 
2D strain ellipses. Then recombine the ellipses into an ellipsoid. 

Shapes 
A single number, the strain ratio, specifies the shape (distortion component) of the strain ellipse in 
two dimensions. In three dimensions, two ratios of the principal strain axes fully characterize the 
shape of an ellipsoid: The ratio 1,2R  of the longest and intermediate axes and the ratio 2,3R  between 
the intermediate and shortest axes:  

1,2R X Y=  and  2,3R Y Z=   
The different shapes of finite strain ellipsoids can then be distinguished using the value: 

( ) ( )1,2 2,3K R 1 R 1= − −  
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Notice that 1.0 is the minimum value of 1,2R  and 2,3R .  

Every ellipsoid can be reported as a point in the so-called Flinn diagram, where 1,2R  is plotted 

vertically against 2,3R  and K values describe slopes of lines passing through the origin. 

The diagonal ( 1,2 2,3R R= ) defines plane strain deformation where the Y-axis of finite strain 
ellipsoids keeps constant during deformation (i.e., there is neither extension nor shortening along the 
Y direction and all displacements due to deformation occur in the XZ plane). 
The plain strain diagonal line divides the graph into two fields. At constant volume, the various strain 
states are: 
K = ∞  :  Axially symmetric stretching; X Y Z>>>> ≥ ; Ellipsoids have a long, cigar 

shape and plot near the vertical axis. 
K 1∞ > >  :  Constrictional strain; in this case, X Y Z> = ; the ellipsoids have a prolate to 

cigar shape and plot near the vertical axis, above the plane strain line. 
K 1= : Plane strain at constant volume. 
1 K 0> >  :  Flattening strain; in this case, X = Y > Z ; the ellipsoids have an oblate to 

pancake shape and plot below the diagonal line, near the horizontal axis.  
K 0= :  Axially symmetric flattening. X Y Z≥ >>>> ; The flat ellipsoids plot along 

the horizontal axis. 
 

 
 

Volume change 
Taking V X.Y.Z=  and 0V 1= , dilatation (equation 7) is expressed by: 

( )( )( )1 2 31 X.Y.Z 1 1 1∆ + = = + ε + ε + ε  
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Plane strain conditions separating the constriction and flattening fields in the logarithmic Flinn 
diagram are defined as 2 0ε = . Rearranging in logarithmic terms yields the equation of a line with a 
unit slope. Volume changes produce a parallel shift of the plane strain diagonal line. If 0∆ >  the line 
intersects the vertical axis if 0∆ <  it cuts the horizontal axis. 

Strain intensity 
Several techniques provide a dimensionless measure of strain magnitude with reference to the shape 
of the strain ellipsoid, independently of its orientation. 
The degree of strain visually increases away from the origin. It is defined in a logarithmic Flinn 
diagram as: 

( ) ( )2 2
1,2 2,3D log R log R= +   

 where ( )1,2log R  and ( )2,3log R  are the same ratios as defined for the Flinn diagram. 
The so-called Hsu diagram uses natural strain. All strain states are represented on a 60° sector of a 
circle. The Lode’s ratio 1 1− < ν < +  defines the shape of the ellipsoids obtained: 

( ) ( )2,3 1,2 2,3 1,2log R log R log R log Rν = − +  

ν  is measured along the circle arc. All plane strain ellipsoids (K line of Flinn diagram) plot along the 
bisecting arc 0ν =  , uniaxial constriction along the radius 1ν = −   and all uniaxial flattening along 
the radius 1ν = − . The amount of strain is the distance from the circle center expressed by: 

( ) ( ) ( ) ( )
1

2 2 2 2
1,2 2,3 1,31 3 log R log R log R ε = + +  

 

where 1,3R  is Z X . 
 

 
 
Another measure also uses the ratios of principal strain axes to give intensity ( ) ( )r X Y Y Z 1= + − .  
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Note: Strain ellipses and ellipsoids are shapes that offer no information about the 
deformation history; for example, identical shapes may result from simple or pure shear 
and the sum of two ellipses is another ellipse (ellipsoids in 3D). Conversely, superposed 
structures in anisotropic (layered or foliated) rocks that deformed heterogeneously may 
yield some relative chronology between deformation features. 

State of strain 
The orientation and magnitude of the three principal strain axes define the state of strain. 

Reciprocal strain ellipsoid 
The reciprocal strain ellipsoid is the ellipsoid of certain shape and orientation, contained within an 
unstrained body, which is transformed into a sphere by homogeneous deformation, i.e. the three 
principal axes are transformed into three orthogonal diameters of the sphere. The directions of the 
axes of the reciprocal strain ellipsoid are the original directions of the principal strain axes of the 
unstrained state. 

 Mohr diagram for strain 
As previously, start considering a two-dimensional pure shear parallel to the coordinate axes x 
horizontal (elongation) and y vertical (shortening), crossing at a fixed origin O . Also, consider 
homogeneous and infinitesimal strain, so that linear and shear strains are so small that their products 
are negligible and all displacements are linear. 
A point 0P  has coordinates ( )0 0x , y . For convenience, consider the line 0OP , inclined at an angle 
θ  to the horizontal x-axis, to have unit length. Then 0x cos= θ  and 0y sin= θ . 
 

 
 

Infinitesimal longitudinal strain 
After deformation, 0P  has moved to 1P  at coordinates ( )1 1x , y . The displacement 0P  to 1P  has two 
components, each parallel to the coordinate axes. They correspond to the linear extension (equation 
1) of the horizontal and vertical lines defining 0x  and 0y , respectively. These two components are: 
 

Horizontal extension:   x cosε θ   
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Vertical extension:   y sinε θ   

Lines 0OP  and 1OP  are nearly superposed and parallel if displacement components are 
infinitesimally small. A simple geometric construction and application of the Pythagora’s theorem 

then shows that lengthening components of the line 0 1OP OP=  are 2
xx xe cos= ε θ   and 

2
yy ye sin= ε θ  

(negative in the sketched case), respectively. 
Then, the linear extension of the unit length line is: 

 
2 2

x ycos sinε = ε θ + ε θ    
For infinitesimal strain, this can be converted in terms of quadratic elongation (see equation 4): 

 
2 2

x ycos sinλ = λ θ + λ θ   (9) 

Re-writing with the trigonometric substitution to double angles ( )2cos 1 cos 2 2θ = + θ   and 

( )2sin 1 cos 2 2θ = − θ  yields a longitudinal elongation:  

 x y x y cos 2
2 2

ε + ε ε − ε
ε = + θ  (10) 

Infinitesimal shear strain 
The small displacement of 0P  to 1P  involves also a change in the slope of the line from 

0 0 0tan y xθ =  to 1 1 1tan y xθ = . This line rotation implies shear strain as in equation (6).  
The line 0OP  is the radius of the circle deformed into the strain ellipse passing through 1P . The line 

tangent to the circle in 0P  (hence initially orthogonal to 0OP ) becomes inclined to 1OP . The change 
from right angle to the new angle is the angle of shear ψ . This can be visualized as the angle between 
the line orthogonal to 1OP  and the inclined tangent to the unit circle, which is also the angle between 

1OP  and the normal to this inclined tangent. Call Q  the point of intersection between the 
perpendicular from the origin to the distorted tangent and this line. Then the shear angle is given by: 
 1cos OQ OPψ =   
which can be written with the secant function: 

1sec OP OQψ =  

remembering the trigonometric function 2 2tan sec 1ψ = ψ − . 
The standard equation of an ellipse whose major and minor axes coincide with the coordinate axes 
is: 

( ) ( )2 2x a y b 1+ =  

with a and b the semi-axes, in this case, x x1+ ε = λ  and y y1+ ε = λ . 

In coordinate geometry and assuming that for infinitesimal strain 2
0 1x x x=  and 2

0 1y y y= , the 

equation of the ellipse at ( )1 1x , y  is ( ) ( )2 2
1 1xx / a yy b 1+ =   

Since strain is very small, the equation of the ellipse simplifies to that of the tangent line at 1P . We 

express for 1P : ( )1 x xx cos 1 cos= θ + ε = θ λ   and ( )1 y yy sin 1 sin= θ + ε = θ λ  

The tangent to the strain ellipse at 1P  becomes: 

( ) ( )x yxcosθ λ + ysinθ λ =1 
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For infinitesimal strains, the variables can be taken as constants and we identify the standard equation 
of a line mx+ny+r = 0 . 

The perpendicular distance of a line to the origin is 2 2d r m n= +   
Where radius r is an absolute value. 

Thus we can write  ( ) ( )2 2
x yOQ 1 cos sin = θ λ + θ λ  

  

Hence  ( ) ( )2 2
x ysec cos sin ψ = λ θ λ + θ λ  

  

Substracting 1, we obtain the shear strain: ( ) ( )2 2 2
x ytan cos sin 1 ψ = λ θ λ + θ λ −  

  

which in equation (9) yields: 

( )x y

x y
cos sin

λ − λ
γ = θ θ

λ λ
 

Expressing  ( ) ( )22
x y x y1 1λ λ = + ε + ε  

Infinitesimal strains become so small when they are squared that they can be neglected. Then

x y 1λ λ ≈  and: 

( ) ( )22
x y1 1 cos sinγ = + ε + ε θ θ  

Using the double angle for single angles and developing the squared strain terms yields: 

 
( )x y sin 2

2 2

ε − εγ
= θ   (11) 

Mohr circle for infinitesimal strain 
Equation (10) and the halved equation (11) can be squared and added to write: 

( )( ) ( ) ( )( ) ( )2 22 2 2
x y x y1 2 2 1 2 cos 2 sin 2   ε − ε + ε + γ = ε − ε θ + θ     

Since 2 2cos sin 1+ = , for any angle: 

( )( ) ( ) ( )( )2 22
x y x y1 2 2 1 2   ε − ε + ε + γ = ε − ε     

This solution has the form of the standard equation of a circle in the coordinate plane (x,y) with center 
at (h,k) and radius r : 

( ) ( )2 2 2x -h + y-k = r  
where x = ε , y 2= γ  and k 0= . 
A Mohr construction is thus valid for an infinitesimal strain with normal extension as abscissa. In the 
circle of strain, the ordinate represents only one-half of the shear strain. Like for stresses, an angle 
subtended at the center of the Mohr strain circle by an arc connecting two points on the circle is twice 
the physical angle in the material. This readily shows that the maximum shear strain occurs on planes 
at 45° to the maximum elongation. 
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Mohr circle for finite strain 
Approximations made for infinitesimal strain ( 0 1P P=  and 0 1θ = θ = θ ) cannot be accepted for larger, 
geological and measurable strain. 
Longitudinal strains are considered using the reciprocal quadratic elongation ( )21 1′λ = λ = + ε
(equation 4). The derivation for changes in length is similar to that for infinitesimal longitudinal 
strain, yielding a result comparable to equation (9) rewritten with 'λ  and 'θ , the orientation of a 
marker line after deformation:    

 
2 2

x y
' '' cos ' sin 'λ = λ θ + λ θ   (12) 

A formulation resembling equation (10) for an infinitesimal longitudinal strain is obtained using the 
double angle identities ( )2cos ' 1 cos 2 ' 2θ = + θ  and ( )2sin ' 1 cos 2 ' 2θ = − θ : 

 
x y x y
' ' ' '

' cos 2 '
2 2

λ + λ λ − λ
λ = + θ   (13) 

Assessing shear strain starts, like for infinitesimal strain, with the equation of the ellipse, but now 
expressed in terms of reciprocal quadratic elongation: 

2 2
x y
' 'x ' y ' 1λ + λ =  

with x '  and y '  are the coordinates of a point (i.e. the directions of a radius vector) after deformation. 
The equation of a line tangent to the ellipse at that point derives from the equation of the ellipse: 

( ) ( )x y
' '' cos ' x ' sin ' y 'λ = λ θ + λ θ  

Normalizing, expanding, squaring, substituting and developing as detailed in specialized literature 
yields, somewhat expectedly, an equation similar to equation (11): 

 
( )x y' '

' sin 2 '
2

λ − λ
γ = θ   (14) 

where ' 'γ = γ λ .  
The two measures on the left sides of equations (13) and (14) plotted against each other define a 
circle, the Mohr diagram for the strained state, centered on the abscissa between x'λ  and y'λ . Note 

that per definition x x' 1λ = λ represents the greater principal strain but plots on smaller values than 

y y' 1λ = λ , the smaller principal strain. The strain Mohr circle is entirely on the right side of the 

origin (the 'λ -axis is horizontal) since the reciprocal quadratic elongation ( )21 1′λ = λ = + ε  is always 
positive. 'γ is a measure of γ , the shear strain of a material line at 'θ  to the identifiable xλ direction, 
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in the deformed state. The lines of no finite elongation plot have ' 1λ = . They are the intersections of 
the vertical line through this abscissa point and the circle. 
 

 
 
There are important differences with the stress Mohr circle.  
- The strain Mohr circle represents a two-dimensional state of homogeneous finite strain.  
- Any point on the circle represents a line, not a plane as for the stress Mohr circle.  
- Using reciprocal elongations, the strain angles 'θ  are positive clockwise and laid off from the 

left side of the circle center.  
- However, the shear angle ψ  measured between the abscissa and the line connecting the origin 

to any strain point (since ' 'γ = γ λ ) remains positive anticlockwise.  

Mohr circles for infinitesimal and finite strain in three dimensions 
Like with stresses, the reciprocal intermediate principal strain axis can be plotted on the abscissa. 
Two circles within the defined two-dimensional circle represent the whole state of three-dimensional 
finite strain. 

Strain regime 
As a first approximation, the general strain is assumed to be homogeneous and can be discussed in 
two dimensions (plane strain), where no area-change has taken place. The notions in two dimensions 
(2D) are then extended to three dimensions (3D). General deformation has two endmembers: 
- Pure shear.  
- Simple shear; 
They refer to two types of deformation paths, respectively: coaxial and non-coaxial. These two terms 
refer to characteristic conditions under which deformation, as a process, occurs and evolves. Per 
definition, simple shear and pure shear are therefore strain regimes. 

 Coaxial deformation; Pure shear 
Coaxial deformation path 

A coaxial deformation path is one in which the principal strain axes before and after strain coincide. 
They remain parallel to the same material lines throughout straining (i.e. the axes of the finite and 
infinitesimal strain ellipses remain parallel throughout the deformation). The coaxial deformation is 
irrotational.  
In 2D, coaxial deformation transforms a square into a rectangle by homogeneous flattening. Two 
opposite sides of the square are shortened in one direction; the other two sides are elongated in the 
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orthogonal direction. After coaxial deformation, the sides of the square remain parallel and 
perpendicular. 
 

 
 
In 3D, a cube of rock shortens in one direction and extends in the perpendicular direction. The cube 
is converted to a right parallelepiped while the sides of the cube remain parallel throughout the 
deformation, i.e. the sides of the final parallelepiped are parallel to the sides of the original cube. The 
orientation of the principal axes X, Y and Z does not change during progressive, homogeneous 
deformation. 

Pure shear 
If the Y-axis of the strain ellipsoid remains constant in length (plane strain), a coaxial strain may be 
fully described in the plane containing the X and Z axes, i.e. the 2D square transformed into a 
rectangle.  If additionally, the area of the rectangle is the same as that of the initial square, the 2D 
constant area is a constant volume in 3D. Such a constant volume, coaxial and plane strain is pure 
shear. Note that all planes and lines (except the principal strain planes and axes) rotate towards the 
plane of maximum flattening and the line of maximum extension. In that case: 

( ) ( )1 31 1 1+ ε = + ε  
Coaxial total strain ellipse 

However, a coaxial strain may also include uniform dilatation. 

 Non-coaxial deformation; simple shear 
Non-coaxial deformation path 

A non-coaxial deformation path is one in which the directions of the principal strain axes rotate 
through different material lines at each infinitesimal strain increment: non-coaxial deformation is 
rotational. The axes of the finite and infinitesimal strain ellipses are not parallel. 
In 2D, non-coaxial deformation transforms a square into a parallelogram in response to a shear couple. 
Two opposite sides of the square (traditionally the two vertical sides) are progressively inclined in 
one direction; the other two, traditionally horizontal sides are parallel to the shear couple and remain 
parallel. 
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In 3D, a cube of rock becomes a parallelepiped while the upper and lower sides of the cube remain 
parallel throughout the deformation. The principal axes X and Z rotate during progressive, 
homogeneous deformation. The intermediate strain axis Y remains parallel to itself; it is a stable 
direction throughout simple shear deformation. 

Simple shear 
Simple shear is plane strain non-coaxial deformation. Volume remains constant and the Y-axis of 
the strain ellipsoid remains constant in length. Simple shear is analogous to the process occurring 
when a deck of cards is sheared to the right or left with each successively intervening and equally 
thin card sliding over its lower neighbor. Since the cards do not widen (their short side is parallel to 
the Y-axis of the strain ellipsoid), one can observe from the side what simple shear is in the plane 
containing the X- and Z-axes, with a particular interest in the deformation of material lines. A square 
(or the rectangle defined by the limits of the card deck) subjected to simple shear is converted into a 
parallelogram. The vertical sides of the square rotate but remain parallel to each other during 
deformation. These two sides progressively lengthen as deformation proceeds, but the top and bottom 
lines neither stretch nor shorten. Instead, they maintain their original length and remain parallel to 
each other. These stable lines, which are the card plane in three dimensions, are directions of no 
stretch (lines of no finite longitudinal strain). They represent the shear direction, while any card 
materializes the shear plane. All lines that are not parallel to the shear direction, on the shear plane, 
rotate in the same sense as the shear towards the shear plane and the line of shear direction.  
Recall: - In three dimensions, the intermediate strain axis Y is a direction of no change in length that 
remains parallel to itself (the frontal side of cards). It is a stable direction throughout simple shear 
deformation. 

- One line of no finite longitudinal strain is already defined: it is fixed and parallel to the shear 
plane; consequently, the fields of linear extension and shortening are asymmetrical. 

Non-coaxial total strain ellipse 
Any arbitrary strain can be described in terms of a distortional component, which measures the 
ellipsoid shape plus a rotational component, which is the internal rotation of the principal strain axes 
from their original attitudes in the unstrained state.  
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Coaxial / non-coaxial strain: ambiguity 
A rotational strain is equivalent to a coaxial strain combined with external, rigid body rotation. 
Therefore, the shape of a finite strain ellipsoid cannot indicate how the strain was produced.  
Since all planes and lines (except the principal ones) rotate towards planes of maximum flattening 
and lines of maximum extension with both coaxial and non-coaxial deformation, everything moves 
to the same plane and line in high strain deformation.  
Coaxial / non-coaxial strain: distinction  
Particle motion: symmetrical for coaxial deformation, asymmetrical for non-coaxial deformation. 
Instantaneous stretching axes: parallel and perpendicular to shear zone for coaxial deformation, 
inclined to shear zone for non-coaxial deformation. 
Finite stretching axes: fixed for coaxial deformation, rotate for non-coaxial deformation  

Strain markers 
Strain markers are any objects whose original shapes either are well known from undeformed rocks 
or can be estimated. Assuming that they deform passively within and with their matrix, their changed 
shapes reflect the intensity and the regime of strain in the rock. Several techniques have been devised 
for the measurement of strain from a variety of objects in rocks. The magnitude of strain is measured 
by comparing the final shape and configuration with the initial ones. Common shapes used in strain 
analysis include the sphere, circle, ellipse, bilaterally symmetric forms, and forms without bilateral 
symmetry. Accordingly, strain markers are grouped as follows: 

Initially spherical objects (e.g. ooids, cylindrical worm burrows, reduction spots) 
Initially ellipsoidal objects (e.g. pebbles, xenoliths) 
Initially linear object (e.g. belemnites) 
Objects with known angular features (e.g. fossils) 
Evenly distributed objects (e.g. centers of minerals, pebbles). 

Strain measurements are useful to reconstruct the regional strain field. 

 Limitations and warning 
Matrix-object relationship 

Not all deformed objects can be used as an absolute measure of strain because in some rocks the 
matrix deforms more easily than the strain markers. In this respect, most reliable strain markers are 
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worm tubes or reduction spots that have the same competence as the rock matrix, so that they change 
shape as much as the bulk rock. 

Orientation of plane of study  
Strain measurements are often dealing with  
- changes in the ratio of one length relative to a length in another direction and  
- the change in angle between two lines that were initially at a known angle.  
Results are affected by the orientation of planes of study. In addition, the original size of any 
individual marker may be unknown. 

Volume changes 
The true strain is most easily measured if the deformation is volume constant. In this case, shortening 
in one direction is balanced by extension in the perpendicular direction (Poisson effect). The 
volumetric component of strain cannot be detected by relating an original shape to a final shape. A 
further complication arises if the volume reduction during deformation affects only the matrix without 
affecting the strain marker. 
The volume change V1+ ∆   is obtained from ( )( )( )1 2 31 1 1+ ε + ε + ε . 

 Initially spherical objects: Direct measurement of elliptical objects 
The simplest technique for measuring volume-constant strain uses initially spherical markers. These 
spheres are deformed into ellipsoids displaying elliptical cross-sections whose axes are also those of 
the strain ellipsoid. By combining data on axial ratios from differently oriented cross-sections, the 
three-dimensional volume-constant strain of the rock may be determined. In practice, the initial shape 
of spherical strain markers such as oolites is not perfectly spherical, and the deformation varies from 
point to point. Thus, a deformed oolitic limestone contains a variety of sizes and shapes of 
deformation ellipsoids, and many of them have to be measured to derive an average bulk strain for 
the rock. 

 Initially cylindrical objects: Direct measurement of longitudinal strain  
Linear objects for which one can reconstruct the pre-deformation length are sometimes available. For 
example, rigid objects such as belemnite fossils and tourmaline crystals may undergo boudinage 
during elongation. The original length of the object can be determined by simply adding up the lengths 
of all fragments. The final length can be measured directly, and the stretch ( )0   can be calculated. 
The assumptions for this method are: 
- There is no distortion of the boudins  
- The separation of the boudins represents the whole of the longitudinal strain.  
If these assumptions are satisfied, this method can in theory yield both the dilational and distortional 
components of the strain ellipse.  
Once several objects have been measured, their orientations and lengths can be plotted in radial 
coordinates. A best-fit ellipse may be estimated using a set of elliptical templates. In theory, a 
minimum of three points may constrain the ellipse but usually more are advisable. 
 
Crinoid columns with circular cross-sections are also easy to use for bulk strain measurements. In 
most cases, the columnals were originally oblique to the bedding plane in which their cross-sections 
were thus elliptical. Strain techniques using initially elliptical objects as strain markers permit 
calculating strain in the bedding plane. Again, many initial sizes, shapes, and orientations make many 
measurements necessary for assessing a bulk three-dimensional strain. 

 Objects with known angular features: Wellman methods and Mohr circle  
Deformed fossils with bilateral symmetry 

Fossils often possess bilateral symmetry, known angular relationships and proportion characteristics 
that typify a given species. Knowing their original shape, they may be used as strain markers provided 
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several (ideally >10) are available in the outcrop. An important assumption is that the fossils have 
deformed homogeneously with their matrix. Shear strain is deduced from the angular relationship of 
two originally orthogonal (symmetry and hinge or edge) lines; several fossils whose symmetry planes 
intersect the bedding plane in various orientations show various amounts of shear strain. This 
orientation-dependent effect is used to calculate volume-constant strain in the studied plane.  
Procedure 
- Draw on tracing paper a horizontal reference segment of arbitrary length.  
- For each fossil, trace the originally perpendicular symmetry and hinge lines, both starting at 

each end of the reference segment (thus two pairs of lines form a parallelogram).  
- Mark the corners of the parallelogram.  
- Repeat for each fossil.  
- The marked points should fall on a strain ellipse with the reference line as a radius. 

 

This (Wellman) method yields only the shape (distortion component) and not the size (dilation 
component) of the strain ellipse in the measurement plane. 

Deformed fossils without bilateral symmetry 
Fossils without bilateral symmetry are also useful for determining strain the ellipse of a deformed 
rock but the graphical constructions are complicated. 

Mohr strain diagram 
Fry method: Center-to-center distance 

Strain markers in rocks may be too strong to deform equally with their matrix. Examples include 
pebbles in a soft matrix, sand grains, ooids, feldspar porphyroclasts, etc. The shapes of these objects 
cannot be used to determine the strain. Instead, it is possible to use their center-point spacing if the 
objects were uniformly spaced in all directions before deformation (e.g. closely packed circular grains 
or ooids) and had no shape preferred orientation. Assume that their centers represent these 
undeformed objects. The pre-deformation and smallest center-to-center distance of two neighboring 
objects was equal in all directions if their size and distribution were homogeneous and isotropic, 
respectively. Then the minimum distances plotted in every direction between neighboring centers 
should delineate a circle around any grain center. Deformation changes this minimum distance. The 
pre-deformation circle becomes shortened or stretched by homogeneous deformation of the matrix 
along the axes of the strain ellipse. Therefore, the distances between centers of objects reflect the 
orientation and shape of the strain ellipse in 2D, ellipsoid in 3D.  
 

http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#fry
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An important assumption is that the strain markers did not slide past each other during deformation.  
Procedure 
- Draw two orthogonal lines intersecting in the middle of a sheet of tracing paper. Place the origin 
over the center of one object. 
- Mark the centers of all nearby objects. 
- Shift the tracing paper (without rotation) to the next object. Repeat marking centers of all nearby 
objects. 
- Repeat the procedure for all objects. 
- After a sufficient number of objects has been used (typically >50), an elliptical vacancy appears 
around the reference intersection point. The shape of this vacancy is the shape of the strain ellipse. 

fR φ  method: Deformed ellipsoidal objects 

The fR φ  method is a practical tool for strain determination from originally ellipsoidal objects such 
as pebbles. In a given rock section, fR  is the ratio of the long axis to the short axis of a deformed 
elliptical object. This ratio combines the initial ratio (ellipticity) iR  of the measured object and the 
axial ratio of the strain ellipse sR  in this rock section. φ  is the 90± °angle (clockwise versus 
anticlockwise) between the long axis of the elliptical object and an arbitrary reference line. 
Assumptions are homogeneous deformation of equally deformable objects with initial random 
orientation and no ductility contrast with the matrix to avoid rotation components. 
Procedure 
- Measure the angle φ  between the long axis of each elliptical object (>10, the more the better) and 
the arbitrary reference line. 
- Measure the axial length of each object and calculate the shape ratios fR . 
- Plot each pair of values as a point on a graph fR  against φ . 
The points are scattered within a drop-shaped cloud. The position of fR -max determines the 
orientation of the X-axis relative to the reference line; the Y-axis is perpendicular to the X-axis in the 
section surface. Standardized reference curves used as overlays on the data greatly facilitate the 
evaluation of the scatter of points in fR φ  plots. 

Finite strain and displacement: Mathematical description 
Since deformation defines the change in position of points, one way to characterize any deformation 
is to assign a displacement vector to every point of a body placed in a Cartesian coordinate frame. 
The displacement vector joins the position of the considered point in its reference (generally initial) 
location to its position in the deformed situation. This is a forward problem, in which the variables 

http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#fry
http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#fry
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are material coordinates. One can also take spatial coordinates to try reconstructing the initial shape; 
this is an inverse problem.  

 Displacement in 2-dimensions 
Coordinates 

The material point 0P  with initial, material coordinates ( )0 0x , y  has moved, after deformation, to 1P  

at spatial coordinates ( )1 1x , y . For homogeneous deformation of an incompressible body, the 
displacement of 0P  to 1P  is, mathematically, in two dimensions, a coordinate transformation. To get 
it, we write the table: 

 0x   0y  

1x  a b 

1y  c d 
and obtain equations: 

1 0 0x ax by= +  
1 0 0y cx dy= +  

Deformation matrix 
The mathematical basis for the 2D graphical representation of finite strain as strain ellipse and Mohr 
strain circle is a 2 x 2 matrix of numbers known as the deformation gradient tensor, simply the 
deformation matrix. 
A vector is a one-column matrix. If a vector represents the coordinates of a point in space, then 
matrix multiplication may be used to transform that point to a new location: 

01

1 0

xx a b
y c d y

    
=     

      
where the deformation matrix for infinitesimal or homogeneous deformation is: 

xx xy

yx yy

a b
c d

ε ε  
=    ε ε    

 

This is written in a simplified form with the deformation matrix D in bold: 

0 ix x=D  
 

Remember: 
Matrix multiplication is as follows: 

xx xy xx xy xx xx xy yx xx xy xy yy

yx yy yx yy yx xx xx yx yx xy xx xx

a a b b a b a b a b a b

a a b b a b a b a b a b

+ +     
=     

+ +          
  

Like for stress notation, the first subscript means “act on a plane orthogonal to subscript axis”, the 
second subscript means “oriented parallel to subscript axis”. 

In general, we can visualize the type of strain represented by a deformation matrix by imagining its 
effect on a unit square. The two columns of the deformation matrix represent the destinations of the 
two opposite corners, (1,0) and (0,1), of the initial, undeformed square, respectively.  
 

http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#matrices
http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#matrices
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Dilatation (equation 7) is given by 

1 ad bc+ ∆ = −  

The rotational component of deformation is given by 
( ) ( )tan b c a dω = − +  

From a strain ellipse to the deformation matrix  
The long and short axes of the strain ellipse are defined by the principal stretches 1S  and 3S , 
respectively (see equations 3  and 8). Define θ  the initial clockwise angle from the x-axis to 1S  and 

'θ  this angle after deformation ( )'θ = θ + ω . Then: 

3 1a S sin 'sin S cos 'cos= θ θ + θ θ   

3 1b S sin 'cos S cos 'sin= θ θ − θ θ    

3 1c S cos 'sin S sin 'cos= θ θ − θ θ   

3 1d S cos 'cos S sin 'sin= θ θ + θ θ   

From the deformation matrix to a strain ellipse 
The orientations of the strain axes are given by: 

( ) ( )2 2 2 2tan 2 ' 2 ac bd a b c d− θ = + + − −  

The principal strains are given by the two solutions to the following 
λ=0.5{a2+b2+c2+d2 +  √[(a2+b2+c2+d2)2 - 4(ad-bc) 2]} 

Some special cases 

The matrix that does nothing       
1 0
0 1

 
 
 

  

A matrix that describes a simple dilation     
1 0

0 1
+ ∆ 

 + ∆ 
  

A rotation clockwise about the origin     
cos sin
sin cos

ω ω 
 − ω ω 

 

A pure strain with strain axes parallel to x and y    ( )
1

1

1 0
0 1

+ ε 
 − + ε 

  

A general pure strain        
a b
b d

 
 
 

  

http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#straintomatrix
http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#matrixtostrain
http://courses.eas.ualberta.ca/eas421/lecturepages/straindiagrams.html#specialcases
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A simple shear parallel to x       
1
0 1

γ 
 
 

  

Displacement components 
A displacement vector d



 links 0P  to 1P . This vector is possibly not the exact path along which 0P  

has moved to 1P ; it only identifies the initial and final positions of the considered point, but may itself 
be the sum of several smaller vectors.  
The displacement gradient tensor J  is very simply related to the deformation matrix: 

( )
a 1 b

c d 1
− 

= − δ =  − 
J D  

When a point x is multiplied by J , the result is a vector describing the displacement of x (ie its change 
in location). 

0 0x x x= −J  
The strain tensor representing the non-rotational part of the deformation is a variant of the 
displacement gradient tensor. Recall that a pure strain (no rotation of the strain axes) is represented 
by a symmetric matrix. We can design a symmetric matrix that comes close to representing the strain 
component of displacement, by averaging the two asymmetric terms b and c. This gives a matrix 
called the strain tensor E: 

( )
( )

xx xy

yx yy

e e a 1 1 2 b c
1 2 b c d 1e e

  − + 
= =   + −    

E  

Every particle of a deformed body is associated with a displacement vector; collectively, all vectors 
define a displacement field. 
 
General homogeneous deformation is a combination of three types of displacement: (1) Translation, 
(2) rotation and (3) stretch. 
Translation 
A field of parallel vectors with the same direction displaces all points of the body, which suffers no 
internal deformation, by the same distance: 

0

0

x x A
y y B

= +

= +  

ij ij j iX =a x +u  can be written in matrix form as X = Ax + U. The constant values u, which are 
independent of position, represent the rigid body translation and are not considered further. 
Since the displacement is uniform, the body suffers no internal deformation.  
Rotation 
All lines in a body uniformly change their orientation. Therefore, rotation does not affect the shape 
of the body. There are two cases: 

Clockwise rotation: 
0 0

0 0

x x cos y sin
y x sin y cos

= ω + ω

= − ω + ω
 

Anticlockwise rotation: 
0 0

0 0

x x cos y sin
y x sin y cos

= ω − ω

= − ω + ω
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Vorticity 
Vorticity is a mathematical formulation related to the rate of rotation of fluid particles entrained in a 
swirl. The axis around which the particles rotate carries the vorticity vector whose magnitude equals 
the angular rate of rotation. 
In pure shear, for every line rotating clockwise, there is a line rotating by precisely the same amount 
anticlockwise; the average rotation is zero. If deformation is non-coaxial, all material lines rotate 
around the intermediate strain axis. The average angular velocity of the rotating material lines is the 
internal vorticity, which is a vector parallel to the Y-axis. Internal vorticity is quantified with the 
kinematic vorticity number W. In non-compressible material, it is the ratio of angular rotation (in 
radians) to the extension along the X-axis. In two dimensions, the vorticity is also the cosine of the 
angle between the flow asymptotes. This measure of the amount of rotation compared to the amount 
of distortion yields a degree of non-coaxiality: 

W = 0 for pure shear, which is coaxial deformation. 
W = 1 for simple shear, which is rotational deformation. 

Vorticity varies between 0  and 1  for general deformation. 
 

Attention: 
If the body is rotating during deformation, vorticity has two components: shear-induced vorticity and 
spin, which is the rotation of the strain axes. 

Flow lines 
Describing flow lines is another useful method to display strain history.  
In the coaxial case, flow along the strain axes is directly straight inward or outward. The strain axes 
act as flow asymptotes. They also coincide with the eigenvectors of the deformation matrix. 
In non-coaxial flow, flow asymptotes do not usually coincide with the strain axes, even if they 
coincide with the eigenvectors of the deformation matrix. As deformation becomes more non-coaxial, 
the flow asymptotes get closer together until in the case of simple shear, there is only one asymptote. 
Typically, flow converges on one of the strain asymptotes. As strain becomes large (e.g. in a 
mylonite) the X-axis approaches this asymptote, and all the planar and linear fabric elements tend to 
converge on this line. 

 Displacement in three-dimensions 
The point 0P  has initial, material coordinates ( )0 0 0x , y , z . After deformation, 0P  has moved to 1P  

at spatial coordinates ( )1 1 1x , y , z . 
Like for homogeneous deformation in two dimensions, the displacement 0P  to 1P  is mathematically 
a coordinate transformation: 

1 0 0 0x ax by cz= + +  

1 0 0 0y dx ey fz= + +  

1 0 0 0z gx hy iz= + +  
Which written in matrix form is: 

1 0

1 0

1 0

x a b c x
y d e f y
z g h i z

    
    =     
         

 

where the deformation matrix D for infinitesimal or homogeneous deformation is: 
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xx xy xz

yx yy yz

zz zy zz

a b c
d e f
g h i

 ε ε ε     = ε ε ε      ε ε ε    

 

This second-order tensor is symmetrical, which implies that there are three orientations, the three 
diagonal components, for which there is no shear strain. A vectorial quantity with the three Cartesian 
components u , v  and w  parallel to the x, y and z coordinates, respectively, defines the displacement 
of the material point P. For infinitesimal strain problems, the displacement variation can be assumed 
to be linear and uninterrupted within the continuum body. Then, the vectorial components are 
differentiable with respect to the coordinates axes. 

 Finite strain in 3D 
We use and derive in three dimensions measures of strain analogous to those in two dimensions. 

Strain ellipsoid  
The size and orientation of the strain ellipsoid are given by the relative size and directions of the three 
mutually perpendicular principal strain axes ( ) ( ) ( )1 2 3X 1 Y 1 Z 1= + ε ≥ = + ε ≥ = + ε . These three 
axes are poles to the three principal planes of strain, which are the only three planes that suffer zero 
shear strain. The equation describing this ellipsoid is: 

( ) ( ) ( )

2 2 2

2 2 2
1 2 3

x ' y ' z ' 1
1 1 1

+ + =
+ ε + ε + ε

 

Cross-sections of the strain ellipsoid are ellipses (but there can be circular cross-sections). In general, 
the way we determine the 3D strain ellipsoid is to saw up rocks to define surfaces on which we find 
2D strain ellipses. Then recombine the ellipses into an ellipsoid. 

Strain tensor 
To specify the strain ellipsoid completely requires nine numbers organized in a 3 x 3 matrix.  

The three values of ( ) ( ) ( )1 2 3X 1 Y 1 Z 1= + ε ≥ = + ε ≥ = + ε  
The plunge and trend of one strain axis after deformation  
The rake of a second axis in the plane perpendicular to the first.  
The plunge trend and rake for the three axes before deformation  

The three-dimensional deformation gradient tensor is this 3 x 3 matrix.  
For a non-rotational strain, the matrix is symmetrical and only 6 numbers are required because the 
orientations are the same before and after deformation. 

Rotation and strain in 3D 
Rotational strain in 3D is complex. The rotational component of deformation can be perpendicular to 
two of the strain axes and therefore parallel to the third. When this is the case, the strain is described 
as monoclinic. 
However, the rotation axis can be different from any of the strain axes. In that case, there is no mirror 
plane and the strain is triclinic. Triclinic strain and especially progressive triclinic strain (where 
rotation and distortion occur concurrently but on different axes) is very tricky to work with and 
requires techniques beyond the scope of this course. 

Displacement vector field 
Since every point in a deforming body follows a displacement vector, there is a displacement vector 
field covering the entire body. We have complete knowledge of the deformation if we know this 
displacement vector field.  

Velocity field 
Describes the velocity and direction of motion of the particles for the increment considered 
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Flow lines  

Experimental rheology and strain 
Constitutive equations describing the ductile flow of rocks relate stress to the strain rate and not to 
the finite strain. This has important implications. Deformed rocks display a finite state of strain, which 
is the sum of all deformations these rocks have experienced. Since the strain rate essentially is the 
incremental strain per unit time and since finite strain ellipsoids do not provide any information about 
the deformation path, i.e. the incremental strain ellipsoids, ductile deformation structures cannot be 
directly interpreted in terms of stress orientation. In short, assuming that the maximum shortening 
direction of finite strain is parallel to the maximum compressive stress is a major blunder. 

Conclusion 
The strain is the change in the shape of a body because of deformation due to applied stresses. A 
strain involves volume changes (dilation or compaction), length changes (extension or shortening) 
and changes of angle (shear strain). Three mutually perpendicular principal strain axes, typically X > 
Y > Z characterize strain states. The geologist analyzes the long-term cumulative effect of 
deformation, which is the finite strain. The strain analysis is concerned with the estimation, at various 
points in a rock body, of the form and orientation of the finite strain ellipsoid. Different deformation 
mechanisms can result in similar geometrical forms. 
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