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MECHANICAL ASPECTS OF DEFORMATION  

Mechanics deals with the effects of forces on bodies. A solid body subjected to external forces tends 
to change its position, displacement, or shape. During rigid body deformation, rocks are translated 
and/or rotated while their original size and shapes are preserved. 
 

 
 
If a body absorbs some or all the forces acting on it instead of being moved, the body becomes 
stressed. The forces then cause particle displacements, resulting in the body's shape changing and 
becoming deformed. Strain refers to the change in shape or non-rigid body deformation of a rock 
resulting from the application of stresses. 
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On Earth, the most significant forces are due to gravity and the relative motions of large rock masses 
in the crust and the mantle. Other possible forces are usually small or act only for short periods, so 
that no significant strain results. 
Movement-related forces act for relatively long times. Structural geology is concerned with the 
permanent deformation, or failure, that produces structures such as folds and faults in rocks. If a 
rock fractures and loses cohesion, it is considered brittle. If the rock had deformed without losing 
cohesion and retained its intricate shapes when the forces ceased acting, the rock would display a 
permanent strain and be considered ductile. The behaviour of the rocks, that is, whether they deform 
permanently or not and whether any deformation is predominantly by folding, by faulting, or by yet 
other modes, is influenced by the interplay of several physical and chemical factors. Thus, a thorough 
understanding of the deformation process is important.  
The primary purpose of this lecture is to examine some of these factors and gain a physical 
understanding of how rocks deform in nature. The description of any deformation process involves 
specifying the loads applied, which is the goal of a dynamic analysis. Indeed, the propensity for rock 
deformation can be estimated using easily measured material properties, such as the flow stress as a 
function of strain, strain rate, and temperature, which apply to many rocks. Hence, this discussion 
defines the concepts of stress, strain, rheology, and equations of motion. Nobody can see stresses 
directly; one can only infer them from the results of deformation. This lecture will begin with this 
topic and introduce the vector calculus it involves. 

 Physical definitions 

 Continuous medium 
Rocks are complex assemblages of crystals, grains, fluids, and other materials whose properties and 
physical parameters vary continuously. Continuous variation implies that these parameters have 
spatial derivatives. It is, therefore, necessary to consider infinitely small volumes of material in which 
physical properties are the same everywhere. This is a continuous medium that models real materials 
without considering their fine (e.g. atomic) structure. The mechanical discussion that follows 
considers rocks as continuous media. 
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 Newton’s axioms: Laws of motion 
Newton’s axioms state the conditions under which a body moves in response to an external quantity, 
the force, and a characteristic of the body: its mass (i.e., the amount of material in the body). In 
dynamics, only the driving forces of the movements are considered. Since deformation is defined as 
the relative movement of points, Newton's three laws of motion are considered fundamental axioms.  
Law 1, (inertia principle) 
A body remains in a state of rest or in uniform motion in a straight line unless new forces act upon it, 
compelling it to change that state or motion. 
The rate of such a “free-moving” body is constant in terms of magnitude and direction. 
Law 2, (action principle) 
The change of motion is proportional to the force impressed and is in the same direction as the line 
of the impressed force. 
Law 3, (reaction principle) 
To every action   

 

F there is always opposed an equal reaction FR = −F; or, the mutual actions of two 
bodies on each other are always equal and directed to opposite parts. 
For example, a falling rock exerts the same force on the Earth as the Earth exerts on the rock. 

 Dimension / Quantity 
Mechanical properties of a material are expressed in terms of the three independent, physical 
dimensions (i.e., measurable parameters) length [L], mass [M], and time [T], [ ] meaning “has the 
quantity of”. Other dimensions, such as electrical charge [Q] and temperature [θ], are derived 
dimensions.  
A quantity is the numerically scaled magnitude of a physical dimension. Quantities are conventionally 
expressed in the Système international d'unités (SI units). These units are meter (m), kilogram (kg), 
and second (s) for length, mass, and time, respectively.  
- One meter is the distance that light travels in a vacuum during 1/299’792’458 of a second.  
- One kilogram is the mass of the International Prototype Kilogram stored in a vault at the Bureau 

International des Poids et Mesures in Sèvres (France). It is almost exactly equal to the mass of 
one liter of water. 

- One second is “the duration of 9,192,631,770 periods of the radiation corresponding to the 
transition between the two hyperfine levels of the ground state of the Caesium 133 atom” (after 
the Certificate in Investment Performance Measurement) at a temperature of 0 K.  

Force 
A force is what influences or tends to change the motion of a body. 

 Mathematical expression 
A force possesses both magnitude and direction. Therefore, a force F�⃗  is a vector quantity that follows 
the rules of vector algebra. Conventionally, an arrow in a given coordinate system represents it.  
- The length of the line specifies the amount of the force (e.g. how strong a push is).  
- The orientation of the line specifies its direction of action (i.e., the direction in which the push is 

directed).  
- An arrow pointing in the direction of acceleration indicates the sense of direction. 
 

The action principle states that a force F�⃗  acting on a body of mass m will accelerate the body in the 
direction of the force. The acceleration a�⃗  is inversely proportional to the mass m and directly 
proportional to the acting force: 
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a = F m F= m.a⇔
    

This relationship is also written:  

F�⃗ =
mv�����⃗

t =
d(mv�����⃗ )

dt  

where mv�����⃗  is the product of mass and velocity, i.e. the momentum, and t is time.  
 
The most familiar force known to us is weight, which, by definition, is the force experienced by a 
mass (the product of volume and density) in the direction of gravity’s acceleration and, hence, normal 
to the Earth’s surface.  
As with any vector quantity, a force may be resolved into several components acting in different 
directions, according to the parallelogram rule of vector analysis. For example, any force F�⃗  can be 
resolved in three components labelled F�⃗ x, F�⃗ y and F�⃗ z, parallel to the coordinate axes x, y and z, 
respectively. This is conveniently written in a column form: 

F = �
Fx
Fy
Fz
� 

 Orientation 
To define orientations, one applies the concept from vector analysis that two vectors can define a 
plane. This first definition is extremely useful in 3D applications, as the product of these two vectors 
is a vector perpendicular to both, i.e., perpendicular to the plane that contains them. The vector 
product is also a unit vector, as its magnitude is 1. The practical application is the standard Cartesian 
coordinate system, for which 𝚤𝚤 is the unit vector along the x-axis (thus orthogonal to the yz plane), 𝚥𝚥 
is the unit vector aligned with the y axis (perpendicular to the xz plane), and 𝑘𝑘�⃗  is the unit vector along 
the z-axis (perpendicular to the xy plane). Expressing fully the force vector is therefore: 

F�⃗ = �
Fx
Fy
Fz
� = Fx. ı⃗ + Fy. ȷ⃗ + Fz. k�⃗ = Fx. �

1
0
0
� + Fy. �

0
1
0
� + Fz. �

0
0
1
� 

or 

F�⃗ = �
Fx
Fy
Fz
� = Fx. e�⃗ x + Fy. e�⃗ y + Fz. e�⃗ z

 with e�⃗ i the unit vector along the i-axis. 
When one writes the three vector components, i.e. how long each vector is along each of the 3 axes, 
one omits the unit vectors, and coordinates are simplified to the coefficients of the  ı⃗, ȷ⃗ and k�⃗  parts of 
the equation. The vector entity, defined by three numbers and a coordinate system, is mathematically 
described as a first-order tensor. 
Forces and force components are added as vectors. 

 Dimension 
The unit and dimension of a force are defined from the second Newton’s law: F�⃗ = m.a�⃗ . The 
dimension has the form: 

[F] = [M. L. T−2] 
The mass is a scalar quantity, i.e. it requires only one number to define it. Its unit is the kilogram 
(1kg). Mathematically, a scalar is an entity also referred to as a zero-order tensor.  
Acceleration needs a coordinate system to be defined. 
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The Newton and the dyne are the basic units of force (1 N = force required to impart an acceleration 
of 1 m/s-2 to a body of 1 kg: 

1N = 1kg. 1m. 1s−2 = 105dynes 

 Surface - body forces 
Body forces 
Body forces result from the action of distant, external forces (such as gravity, the electromagnetic 
field, etc.) on every particle of the body; for example, gravity acts on every atom of a pen, producing 
its weight. Body forces are consequently proportional to the mass and, hence, to the volume of the 
body. 

 
 

In purely mechanical systems, the body forces are of two kinds: those due to gravity and those due to 
inertia.  
Surface forces  
Surface forces (or applied forces) act on the external boundaries of a body as well as on any 
imaginary or real surface within this body.  
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No concrete physical surface or visible material boundary is required. Surface forces, such as friction, 
are proportional to the size of the area upon which they act. Surface forces can result from the action 
of the body on itself, such as the tension in a stretched rubber band. Surface forces are usually 
generated beyond the considered body. They are transmitted to it through the entire mechanically 
continuous region that connects it to the point where the force is exerted. For example, the action of 
pushing on its extremity and displacing a pen.  In geology, tectonic forces can be transmitted through 
the plate from its boundaries. 
Ratio of the body forces to the surface forces  
Since gravitational forces are directly proportional to mass, the weight of an overlying column of 
rocks constitutes a significant force on rocks at depth. 
In general, each element of mass is in a state of dynamic equilibrium, which means that the sum of 
body forces is equal and opposite to the sum of surface forces. If dℓ is the characteristic length of a 
small body element, the ratio of body forces to surface forces is: 

Body forces
Surface forces

= K
(dℓ)3

(dℓ)2 

which tends to be zero as dℓ tends to zero. The difference in power implies that the magnitude of 
body forces diminishes more rapidly (considerably for large dℓ) than that of surface forces. 
Consequently, if the volume element is small, the body forces in equilibrium with themselves may 
be neglected. The scaling between body and surface forces has, for example, important corollaries in 
biological engineering; the strength of a bone is proportional to its cross-sectional area, but the weight 
of the body is proportional to its volume. The bones of larger animals, therefore, have greater 
diameter-to-length ratios to hold relatively larger weights. Such scaling relations also control 
mechanical deformation processes. For example, George Gabriel Stokes derived a solution in 1851 
for the velocity of a sphere falling (or rising) in a viscous fluid with a lower (or higher) density. This 
velocity increases with the square of the radius of the sphere because the buoyancy forces increase 
relatively more than the friction forces acting on the sphere surface against its motion. Similar 
relationships between buoyancy and friction forces have important tectonic implications for the rise 
of diapirs and the sinking of lithospheric plates into the mantle. 

 Directed forces 
Directed forces act in particular directions. In geology: 
- Compression is a pair of in-line forces that tends to compress bodies;  
- Tension is a pair of in-line forces that tends to pull bodies apart;  
- Shear refers to coupled forces acting in opposite directions in the same plane but not along the 

same line;  
- Torsion is a twisting force. 
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 Normal and shear components 
A force F�⃗  acting on a plane is generally oblique to the surface and may be resolved into vector 
components, acting perpendicular and parallel to the plane.  

F�⃗ = F�⃗ N+F�⃗ S 

F�⃗ N and F�⃗ S are the normal and shear forces, respectively. The shear component facilitates slip on the 
plane while the normal component tends to prevent it, pressing both sides of the plane towards each 
other. 
In two dimensions, F�⃗ , F�⃗ N and F�⃗ S are coplanar; the two perpendicular components are defined 
according to the right angle trigonometry as: 

FN = F cos θ 
FS = F sinθ 

with θ the angle between the applied force and the normal to the considered plane (line in 2D). The 
magnitude is obtained using the Pythagoras’ Theorem: 

F2 = FN2 + FS2 
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These equations demonstrate that the key to determining the component magnitudes is to know (i) 
the magnitude of the applied force vector and (ii) the angle it forms with the plane.  

 Action / reaction; static equilibrium 
Imagine a cube of rock within a large volume of rock assumed to be a continuous material. The six 
faces of the imagined cube are pressed against adjacent parts of the rock, while corresponding 
reactions occur within the cube. Newton’s reaction principle, stating that forces occur in pairs that 
are equal in magnitude but opposite in direction, expresses this situation. In addition, each atom 
within the cube is acted on by gravity, but each atom outside the cube is also. Therefore, the general 
body force, which is equal everywhere, can be, in a first approach, considered to be absent. 
 

 
 
In static equilibrium, the considered cube of rock is neither moving nor deforming. The system of 
forces is closed, and the sum of all forces in all directions equals zero. Static equilibrium is the 
situation treated to understand natural geological forces. 
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In that case, forces on opposite faces cancel out, and there is no net couple that would rotate the cube. 
This again requires that forces on opposite faces be equal in magnitude and opposite in sense. The 
shear forces on opposite faces must also be balanced. To simplify the argument, we take the cube 
edges as the principal axes of a three-dimensional coordinate system. Then, the shear component is 
resolved into two shear components parallel to the face edges. 

Stress in a continuous medium 
Stress is what tends to deform a body. 

 Definition 
The magnitudes of the forces acting on the external faces of the cube depend on the areas of these 
faces: the larger the cube, the larger the force required to produce a change in shape or movement. 
The situation is complicated by variations in magnitude and direction of force from point to point 
over each cube face. Therefore, it is convenient to have a measure of the deforming forces that is 
independent of the size of the cube considered. This freedom in the calculation is procured by 
imagining the cube to shrink to a cubic point whose infinitely small faces have area A = 1. 
The significance of the area on which a force is applied is intuitively known to all of us. The feet sink 
when walking on snow, to a lesser extent if one has snowshoes, and one can even slip on skis. The 
force (weight of the person) acting on the snow is the same, but increasing the contact area reduces 
the stress on the snow. This indicates that stress, rather than force, controls the deformation of 
materials (in this case, snow). Therefore, one needs to work with stress to investigate the deformation 
of rocks. 
Traction 
The traction T represents the force intensity with respect to the surface area on which it is applied. 
If the force F is uniformly distributed over a large area, then:  

T=F/A 
If the force varies in direction and intensity over the area, then traction should be defined only at a 
point considered as an infinitesimal area. Using the imaginary cubic point, then traction is formally 
defined as the force (F) per unit area applied in a particular direction at a given location on the cube. 
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A more precise definition of the traction at a point is given by the limiting ratio of force ΔF�⃗  to the 
area ∆A as the face area is allowed to shrink and approaches zero (Cauchy’s principle). 

T��⃗ = limΔA→0 �
ΔF�⃗
ΔA� =

dF
dA

 

In this equation, ΔF�⃗  is a vector quantity defined by three quantities: 
- its magnitude; 
- its orientation; 
- the orientation of the plane on which it is applied, which is defined by the normal unit vector 𝒏𝒏��⃗ . 

F�⃗ = T��⃗ . A. n�⃗  
This definition contains two directional components: one for force and one for plane orientation. It 
indicates that traction is a bound vector that may vary from point to point on any given plane and be 
infinitely differentiable on the infinite number of planes that pass through any given point. Traction 
is, therefore, always expressed with reference to a particular plane. 
Stress 
Assuming mechanical equilibrium (law of motion 3, reaction principle), if traction is applied to the 
external surface of a body, then it sets up internal tractions within the body. The same equation that 
defines external traction also defines internal traction; hence, there are equal but opposite tractions 
on both sides of the contact cubic point. This pair of balanced tractions is the stress. Stress is applied 
to any point of a body, like spring tension: there are equal and opposite forces on the other (hidden) 
three faces of the cubic point. Since stress comprises both the action and the reaction, stress is defined 
as a pair of equal and opposite forces acting on the unit area. Stress is transmitted through the 
material by the interatomic force field. The body is then in a state of stress. 
 

 

 Dimension 
Stress, as pressure, includes the physical dimensions of force and those of the area on which the 
force is applied: 

[M*LT-2]/[L2] = [Mass * Length-1* Time-2] 
The unit is the Pascal (1 Pa = 1 Newton.m-2, remembering that 1N = 1 kilogram meter per square 
second: 1 kg.m-1.s-2) and Bars with 1 Bar = 1b = 105 Pa ~ 1 Atmosphere. Geologists more commonly 
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use 1 megapascal (MPa) = 106 Pa. A useful number to remember for discussion with metamorphic 
petrologists in particular, is 1 kb = 100 MPa. 100 MPa is approximately the lithostatic pressure at the 
bottom of a rock column of 4 km height and with a density of 2600 kg.m-3 (2600 kg.m-3 x 4000 m x 
9.81 m.s-2 = 102 MPa, see section “Terminology for state of stress”). 

 Stress components 
With an infinitely small cube, body forces are negligible compared to surface forces. Hence, body 
forces are in equilibrium with themselves, and one can consider the state of stress at a point (the 
infinitely small cube) within the body. Since stress cannot be defined without specifying the plane 
upon which the stress acts, both the direction of the force and the orientation of the faces of the cube 
must be considered.  

 
 
Forces (and traction vectors) on each of a cube's faces are decomposed into three mutually orthogonal 
components, one normal to the face (the normal force) and two parallel to the face (the shear forces). 
Like forces, stresses acting on an infinitely small cube whose faces are unit areas can be decomposed 
into three normal stresses perpendicular to the faces and three shear stresses parallel to each face; 
each shear stress is parallel to one of the coordinate directions contained in the face plane.  
- The normal stress, transmitted perpendicular to a surface, is given the symbol 

 

σ. 
- The shear stresses, transmitted parallel to a surface, have the symbol 

 

τ  but 

 

σ is common notation 
in the literature. 

 
Exercise; graphic representation to be done with Excel 

* Draw a square ABCD and a diagonal surface on it. 
* Draw a vertical force F1 that acts on this surface.  
* Write equations that express the normal and shear components on this surface.  
* Show that the highest shear stress is obtained for an angle θ of 45° between the 
surface and F1.  
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* Represent graphically variations of the normal force FN and the shear force FS on 
the surface as a function of the angle θ. 

 Stress at a ‘point’ in a continuous medium  
The state of stress at a point is three-dimensional. It is convenient to use the edges of the 
infinitesimally small cube (the “shape” of the point) as a system of Cartesian coordinates (x1, x2, x3). 
Employing the symbol σij to denote the component of stress that acts on the pair of faces normal to 
xi (thus identifying the plane orientation) and in the direction of xj (thus defining the direction of 
traction), one resolves the stresses that act on the faces of the cube normal to x1 into: 

 

σ11 the normal stress component, perpendicular to the faces normal to 𝑥𝑥1(or x). 

 

τ12  and 

 

τ13 the two shear components within the paired faces normal to x1, each acting 
parallel to one of the other coordinates axes x2 and x3 (or y and z), respectively. 

For each pair of faces, there is one face for which the inward-directed normal stress, taken here as 
positive, is opposite to the normal stress acting on the other face. The same procedure applies to the 
faces normal to x2 and x3 (or y and z), so that a total of nine stress components is obtained for the 
three pair of faces: 
 
Pair of faces normal to 1x :   

 

σ11 

 

τ12 

 

τ13   

 

σxx  

 

τxy 

 

τxz  
Pair of face normal to 2x :   

 

σ22 

 

τ21 

 

τ23 or written as 

 

σyy 

 

τyx  

 

τyz  
Pair of face normal to 3x :  

 

σ33 

 

τ31 

 

τ32   

 

σzz  

 

τzx  

 

τzy  
 
These are written so that components in a row act on a plane and components in a column act in the 
same direction. Using the symbol σ instead of τ yields the following ordered array: 
 

 

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 

 
This geometrical arrangement represents the original set of coefficients that form the stress matrix: 

11 12 13

21 22 23

31 32 33

σ σ σ 
 σ σ σ 
 σ σ σ 

            (1) 

A matrix that has the same number of rows and columns is a square matrix. One may collectively 
call this matrix of coefficients 

 

σ  or 

 

σij , identifying its elements in a simple form as: 

11 12 13

ij 21 22 23

31 32 33

σ σ σ 
 σ = σ σ σ 
 σ σ σ 

 

This grouping of the nine stress components is the stress tensor. 

Reminder: Mathematical definitions; what are we talking about? 
Scalar: a quantity with magnitude only (i.e., a real number, such as mass, temperature, 

or time). 
Vector: A geometrical object with magnitude and direction (e.g., force, velocity, 

acceleration). 
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Tensor: a mathematical structure with magnitude and two directions (two vectors), one 
(a unit vector) specifying a plane of action (e.g. permeability, strain, stress). 

The stress tensor, which represents all possible traction vectors at a point with no dependence on the 
orientation of the plane (unit normal vector), fully describes the state of stress at a point. More 
specifically, it is a symmetric tensor since the six off-diagonal components are interchangeable; it is 
a second order tensor since it is associated with two directions. Accordingly, stress components have 
2 subscripts, where indifferently and independently i = 1, 2, 3 and j = 1, 2, 3. The subscripts i and j 
refer to the row and column location of the element, respectively. The diagonal components 

 

σi= j are 
the normal stresses and the off-diagonal components 

 

σi≠ j are the shear stresses. 
If the elemental cube does not rotate (i.e. postulating equilibrium condition and no body forces), shear 
stresses on mutually perpendicular planes of the cube are equal: three of the shear components 
counteract and balance the other three, i.e. the rotating moments about each of the axes, the torques 
read across the diagonal of the square matrix, are zero: 

 

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 

 

Reminder 
Torque is the product of the force vector and the perpendicular distance between the 
center of mass and the point of application of the force. 

 
Since σij = σji (i.e. subscripts for shear stress magnitudes are commutative), the symmetrical stress 
matrix is:  

11 12 13

ij 21 22 23

31 32 33

σ σ σ 
 σ = σ σ σ 
 σ σ σ 

 

Its nine components reduce to six truly independent stress components acting on any arbitrary 
infinitesimal element in a stressed body: 

normal stresses   

 

σ11 

 

σ22 

 

σ33   
shear stresses    

 

σ12 

 

σ23 

 

σ31 

Therefore, for an arbitrarily chosen set of orthogonal axes x, y and z, six independent quantities are 
necessary to specify completely the state of stress at a point, i.e. for every surface element leading 
through the point.  
The cube representation helps emphasize an important difference between stress and forces. A 
directed force may be acting in a certain direction (say, towards the left), but this statement lacks 
meaning when applied to internal stresses. A stress component acting upon one side of a surface 
element exists only together with a component of equal intensity but opposite direction, acting on the 
other side. This is true for both normal and shear stresses. Hence, stress may exist in a vertical 
direction but not in the direction of up or down. 

 Principal stresses 
Even if six independent stress magnitudes and unconstrained orientations simplify the stress tensor, 
the formulation remains somewhat cumbersome to employ. Fortunately, this situation can be 
considerably simplified. It is always possible, at any point in a homogeneous stress field, to find three 
mutually orthogonal planes intersecting at the point and oriented such that all shear stresses vanish to 
zero. Thus: 
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τ12 = τ23 = τ31 = 0 

In this case, there remain only the normal components of stress and: 

11 12 13

21 22 23

31 32 33

σ σ σ 
 σ σ σ 
 σ σ σ 

  becomes  
11

22

33

0 0
0 0
0 0

σ 
 σ 
 σ 

 

These three no-shear-stress planes are the principal planes of stress and intersect in three mutually 
perpendicular lines, known as the principal axes of stress at the considered point. The stresses acting 
along these three axes are the principal stresses 

 

σ11, 

 

σ22  and 

 

σ33  denoted 1σ , 2σ  and 3σ to avoid 
repetitive subscripts, with the convention that 

 

σ1 ≥ σ2 ≥ σ3, the maximum, intermediate, and 
minimum principal stresses, respectively. In other words, the principal stresses are the normal 
stresses that act on planes of zero shear stresses.  They coincide with the principal axes of the stress 
ellipsoid, which will be defined further. 
 

Attention! Sign convention: 
In physics and engineering, tensile normal stress, which tends to pull material particles 
apart, is considered positive; conversely, compressive normal stress, which tends to push 
the material particles together, is negative. In geosciences, it is customary to define 
compression as positive and tension as negative because natural stresses are typically 
compressional, even in areas experiencing extension. For example, in a non-tectonic 
environment, the stress at any depth within the Earth is generated by the overburden. It is 
a compressive vertical stress that induces a compressive horizontal stress. Even at the 
Earth's surface, the maximum compressive stress is equal to the atmospheric pressure. 
Shear stresses are positive anticlockwise. 
 

If the magnitudes and orientations of the three principal stresses at any point are known, the 
components of normal and shear stress on any plane through that point can be computed. The state 
of stress at a point may, therefore, be completely characterized by specifying the magnitude of these 
three principal stresses and their respective directions. The six independent stress components are 
needed only when the faces of the reference cube are not parallel to the principal planes of stress.  

 Terminology for states of stress 
Some particular stress states are: 

 

σ1 = σ2 = 0; 3 0σ <  Uniaxial tension  

 

σ2 = σ3 = 0; 1 0σ >  Uniaxial compression 

 

σ2 = 0 Biaxial (plane) stress 

 

σ1 > σ2 > σ3 General, triaxial stress 

 

σ1 = σ2 = σ3 = p hydrostatic state of stress; all shear stresses are zero.  
If p < 0 (tensile) the stress state is referred to as a hydrostatic tension. Hydrostatic stresses will cause 
volume changes but not shape changes in a material. 
In geology, the lithostatic pressure is often used to describe the hydrostatic pressure generated at a 
depth z below the ground surface due solely to the weight of rocks, of mean density ρ, in the column. 
Naturally, this is equal to ρgz where g is the acceleration due to gravity. Such a statement, however, 
requires some qualification because it assumes that the stress state at depth z has become truly 
hydrostatic due to the relaxation of all shearing stresses by some creep process. If the stress state has 
not been allowed to become hydrostatic, and one talks about the stress state due solely to a pile of 
rocks of height z, then this is usually taken to be: 
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z
1 0
σ ρg.dz≈ ∫  

( )2 3 11σ = σ = ν − ν σ     

where 

 

ν is Poisson's ratio. 

 Mean stress 
The mean stress 

 

σ  or hydrostatic stress component p (also called dynamic pressure) is the 
arithmetic average of the principal stresses: 

( )11 22 33 iip 3 3σ = = σ + σ + σ = σ  
This pressure is independent of the coordinate system; it has equal magnitudes in all directions.  

Reminder, fundamental terminology: 
In mathematics, the sum of the diagonal components of a tensor, which does not change with rotation 
of the coordinate system, is the first invariant. 
 
In the Earth, the mean stress typically increases by ca. 30 MPa/km (ca 3kbar/10km). The mean stress 
thus specifies the average level of normal stress acting on all potential fault planes, which governs 
the frictional resistance to slip on fault planes. Otherwise, the mean stress may only produce a change 
in volume, either reducing it if the mean stress is compressive or expanding it if it is tensile. 

 Deviatoric stress 
Observable strain results from distortion, while it is difficult to measure volume changes in rocks. 
Therefore, strain is typically related to the distance between stress and the isotropic state. The 
deviatoric stress expresses this difference by subtracting the mean stress from the stress tensor. 
Considering that any general state of stress is the sum of the hydrostatic mean stress p and a deviatoric 
stress: 

11 12 13 1 12 13

21 22 23 21 2 23

31 32 33 31 32 3

p 0 0 s
0 p 0 s
0 0 p s

σ σ σ σ σ    
    σ σ σ = + σ σ    
    σ σ σ σ σ    

 

where 1 2 3s s s 0+ + = . The second matrix on the right-hand side is the stress deviator. Its 
components are the deviatoric stresses. The principal deviatoric stresses are the amounts by which 
each of the principal stresses differs from the mean stress. They define the effective shear stress, 
which measures the intensity of the deviator: 

( )
2 1 2

2 2 2 2 2 2
eff i j i j 1 2 3 23 31 12

1 1s s s s s
2 2

   τ = = + + + σ + σ + σ      
 

 

The decomposition into the deviatoric stress   

 

sij and the volumetric stress   

 

δijσ , utilizing the standard 
Kronecker delta, is written: 

  

 

σij = sij + δijσ  
and the normal stress relative to the mean stress is then described by the deviatoric stress: 

  

 

sij = σij − δijσ  
That is, 

  

 

δ11 = δ22 = δ33 =1
δ12 = δ13 = δ21 = δ23 = δ31 = δ32 = 0
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under another form the matrix: 
11 12 13

21 22 23

31 32 33

δ δ δ 
 δ δ δ 
 δ δ δ 

 

is the identity matrix 
1 0 0
0 1 0
0 0 1

 
 
 
  

 

 
In simpler words, where σ1 ≥ σ2 ≥ σ3  one can think of the rock being affected by two components: 
 - the mean stress    ( )11 22 33p 3= σ + σ +σ . 
 - and three deviatoric stresses : 1 11s p= σ −  
      2 22s p= σ −  
      3 33s p= σ −  
 

All shear stresses are deviatoric. 
The main deviatoric stress 1s   is always positive, and the smallest one 𝑠𝑠3 is negative (or equal to zero, 
with compression positive); the intermediate deviatoric stress is nearly equal to the mean stress. The 
positive deviatoric stress tends to shorten the rock in the direction of its action, while relative 
lengthening is easiest in the direction of the negative (tensional) deviator. Note that the deviatoric 
stress tensor always contains negative components.  
As a corollary, only the deviatoric stresses leave permanent deformation in rocks.  

 Differential stress 
The differential stress 

 

σd is the difference between the largest and the least principal stresses: 
( )d 1 3σ = σ -σ  

Its value, along with the characteristics of the deviatoric stress tensor, influences the amount and type 
of deformation a body experiences. Note that differential stress is a scalar. It should not be confused 
with the deviatoric stress, which is a tensor. 

Stress acting on a given plane 
In the following demonstration, it is essential to note that the value of stress varies with the orientation 
and magnitude of the imposed force, as well as the orientation and size of the area of action. 
A force F acting on a real or imaginary plane P was resolved into components normal ( NF ) and 

parallel ( SF ) to the plane P. The components have magnitudes:  

NF Fcos= θ  and SF Fsin= θ  (2) 

respectively.  
We further consider that the cubic “point” previously used belongs to the plane P. 
F is oriented to act normally to one cube face; for convenience, vertical F is on the top face of the 
cubic point. F is contained in the square, vertical section orthogonal to P through the cube. In this 
section, faces with unit area A are reduced to unit segment lengths.  
By definition, stress is the concentration of force per unit area, which can be visualized as the intensity 
of force. The stress σ on the cube face has the magnitude: 

Stress = Force / (Area of the cube face) 
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σ = F A 

The normal to plane P is inclined at an angle θ to F. The area PA  of the plane P is larger than the 
unit area A of the cube faces: 

P(Area) = Cube face(Area) / cosθ 
 

 

AP = A cosθ  (3) 

To know the magnitudes of the normal and shear components of stress across P, one must consider 
that PA  is the unit area. Hence, the normal components of force and stress acting on plane P are: 

    2
N PF Fcos A cos A cos= θ = σ θ = σ θ     

and the shear components: (4) 
    S PF Fsin A sin A sin cos= θ = σ θ = σ θ θ  
The general trigonometry states that: 

( )sinθcosθ= sin2θ 2  
Equations (4) become: 

( ) 2 2
N N PF A F A cos cosσ = = θ = σ θ  

and (5) 
( ) ( )S S PF A F A sin cos 2 sin 2σ = = θ θ = σ θ  

 

 
 

Comparison of Equations (2) and (5) shows that stresses cannot be resolved using vectors as if they 
were forces. 
Typically, any rock is under a triaxial state of stress;   

 

σ1, σ2  and σ3 are the principal stresses with 

  

 

σ1 ≥ σ2 ≥ σ3. 
 

Remember!  The convention in geology takes all positive stresses as compressive. In the 
non-geological literature stresses are considered positive in extension! 
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For practical purposes, one can take the arbitrary plane P parallel to 2σ , in turn parallel to the 
horizontal x-axis of the Cartesian coordinates. The angle θ  between the line normal to P and the 
vertical σ1 (parallel to the coordinate z-axis) is also the angle between the plane P and σ3. One 
approaches the problem by considering a two-dimensional state of stress. For this simplification, one 
only considers the two-dimensional principal plane σ1,σ3( ) while ignoring 2σ , orthogonal to this 
slicing plane. This simplification is consistent with the statement that it is the difference between   

 

σ1 
and σ3 that rules deformation while σ2  does little and can, as a first approximation, be discarded. 
One also considers that all lines in the ( )1 3,σ σ  plane represent traces of planes perpendicular to it, 

thus parallel to σ2 .  
From equations (5) that stress components due to σ1 are: 

σ1N = σ1 cos2 θ  
σ1S = σ1 sinθ cosθ 

σ3  is orthogonal to σ1. We can use the same trigonometric construction to resolve stress components 
due to σ3  as: 

σ3N = σ3sin2 θ  
σ3S = σ3 sinθ cosθ 

Where the principal stresses are σ1 and σ3 the equations for the normal and shear stresses across a 
plane whose normal is inclined at θ to σ1 are 

σN = σ1 cos2 θ + σ3sin2 θ  
( )S 1 3sin cosσ = θ θ σ − σ  

where the minus sign for 3Sσ  is necessary because the two stress directions point towards opposite 
directions along the plane. 

From general trigonometry one knows the double angle identities: 

2 cos 2 1cos
2
θ +

θ =  

2 1 cos 2sin
2

− θ
θ =  

which one can substitute in the previous equation to write the normal stress component: 

N 1 3
cos 2 1 1 cos 2

2 2
θ + − θ   σ = σ + σ   

   
 

and simplify to: 

( )1 31 3
N

cos 2
2 2

θ σ − σσ + σ
σ = +  

and one can write the shear stress component as: 

31
S sin 2 sin 2

2 2
σσ

σ = θ − θ  



19 
 

Force and Stress  jpb, 2020 
 

( )S 1 3
1 sin 2
2

σ = θ σ − σ  

When the principal stresses are σ1 and σ3 the equations for the normal and shear stresses across a 
plane whose normal is inclined at θ to σ1 are 

( ) ( )1 3 1 3
N

cos 2
2 2

σ + σ σ − σ θ
σ = +  

 (6) 

( )1 3
S

sin 2
2

σ − σ θ
σ =  

respectively. 
Note that (6) reduces to (5) when σ3 is zero. These relations are extensively used in geological studies 
because σ1 and 3σ  are often close to the horizontal and vertical (lithostatic) tectonic stresses. 
 

 
These equations demonstrate that the value of σS in (6) is maximum when sin2θ = 1 i.e. 

 

2θ = 90° . 
Thus, the planes of maximum shear stress make an angle of 45° with 1σ  and σ3. 
In all cases where 1 2 3σ ≥ σ ≥ σ  the planes of maximum shear stress are only two in number and 
intersect along 2σ . Indeed, it has been observed in triaxial tests ( 1σ , 2σ  and 3σ  have non zero 
magnitudes) that shear fractures form angles close to 45° to the principal stress axis 1σ . The paired 
faults, called conjugate faults, develop more or less synchronously in both of the equally favored 
orientations. Remember that conjugate faults intersect in a line parallel to the intermediate principal 
stress axis 2σ . Normal compressive stresses on these planes tend to inhibit sliding along this plane; 
shear stresses on these planes tend to promote sliding. 
In the special situation where σ2 = σ3 or 1 2σ = σ  there is an infinite number of such planes inclined 
at 45° to 1σ  or 3σ , respectively.  
In all cases, the maximum shear stress has the value ( )1 3 / 2σ − σ . 
Equation (6) also implies that for any arbitrary state of stress with σ1 and σ3, there are surfaces on 
which no shear forces are exerted. We will use this property to define directions of principal stresses. 
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Relationship between normal stress and shear stress: Mohr circle 
The principal stresses are those that are orthogonal to the three mutually orthogonal planes on which 
shear stresses vanish to zero. Between these special orientations, the normal and shear stresses vary 
smoothly with respect to the rotation angle θ. How are the normal and shear stress components 
associated with direction? 
 

 

 Analytical demonstration 
Rearranging σN of equations (6) and squaring both equations one gets: 

( )( ) ( )( )2 2 2
N 1 3 1 31 2 1 2 cos 2   σ − σ + σ = σ − σ θ     

 (7) 

( )( ) 22 2
S 1 31 2 sin 2 σ = σ − σ θ   

One can add both equations (7) to write 

( )( ) ( )( ) ( )2 22 2 2
N 1 3 S 1 31 2 1 2 cos 2 sin 2   σ − σ + σ + σ = σ − σ θ + θ     

Since 2 2cos sin 1+ =  for any angle: 

( )( ) ( )( )2 22
N 1 3 S 1 31 2 1 2   σ − σ + σ + σ = σ − σ     

in which one recognizes the form of the standard equation of a circle in the coordinate plane (x,y) 
with centre at (h,k) and radius r : 

(x − h)2 + (y − k)2 = r2 
with Nx = σ , Sy = σ  and k 0= . 
This leads to the two-dimensional representation of stress equations known as the Mohr diagram.  

The radius of the stress-circle is:       1 3
2

σ − σ 
 
 

 

The center of the stress-circle on the Nσ  axis is at h  :     1 3
2

σ + σ 
 
 

 

Cyclic interchange of the subscripts generates two other circles for the other two principal stress 
differences, ( )2 3σ − σ  and ( )1 2σ − σ . 
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 Graphical construction 
Equations (6) describe a circular locus of paired values σN and σS (the normal and shear stresses, 
respectively) that operate on planes of any orientation within a body subjected to known values of σ1 
and σ3. In other word, for a given state of stress and orientation, normal and shear stresses on a plane 
are represented by a point on the Mohr circle. 
Stress in two dimensions (plane stress) 
The construction of the Mohr stress circle proceeds as follows: 
- For the two-dimensional stress, the normal and shear stresses can be plotted along two orthogonal, 

scaled coordinate axes, with normal stresses Nσ  along the abscissa (or horizontal x-axis), and 
shear stresses Sσ  along the ordinates (or vertical y-axis).  

- These axes have no geographic orientation but have positive and negative directions.  
- By convention, the right half of the diagram is positive for compressive normal stresses. Shear 

stresses that have an anticlockwise sense (consistent with the trigonometric sense) are considered 
positive and are plotted above the abscissa axis. 

 

 

- The principal stresses 1σ  and 3σ   of a given a state of stress are per definition normal stress 
components; they are both plotted along the abscissa, at a distance from the origin equal to their 
numerical values.  

- A circle with the diameter ( )1 3-σ σ  and center at ( )1 3C 2 = σ + σ   is constructed through 

points 1σ  and 3σ . The maximum principal stress 1σ  is at the right extremity of the circle, the 
least principal stress value 3σ  is the left extremity of the circle. 
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The circumference of the circle is the locus of all possible paired values of Nσ  and Sσ . Therefore, 
any point P on the circle has coordinates ( )N S,σ σ  where Nσ  and Sσ  are given by equations  (6); 

2θ  is the angle between the Nσ  axis and the line PC measured in the anticlockwise (trigonometric) 
sense from the right-hand end of the Nσ  axis. The coordinates of any point P on the circle give the 
normal stress Nσ  (read along the abscissa) and shear stress Sσ  (read along the ordinates) across a 
plane whose normal (ATTENTION: not the plane itself) is inclined at θ  to 1σ . For simple 
geometrical reasons, θ  is also the angle between the fault plane and the least stress 3σ . The 2β  angle 
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measured clockwise from 3σ  to the PC radius is twice the angle between 1σ  and the actual fault 
plane.  
This construction may also be used to find 1σ , 3σ , and θ  given Nσ  and Sσ  on two orthogonal 
planes. Since angles are doubled in this graphical format, the point representing the plane orthogonal 
to P is opposed to it. The Mohr circle can be constructed through these two points linked by a diameter 
intercepting the horizontal axis at center C. 
The Mohr diagram thus allows the magnitudes of normal and shear stresses on variously oriented 
planes to be plotted together. It neatly shows that:  

- The points on the circle (hence attitude of planes) along which shear stress Sσ  is greatest 
correspond to values of 45θ = ± ° . 

- The maximum stress difference ( )1 3-σ σ   determines the value of the greatest Sσ  simply 
because the differential stress is the diameter of the Mohr circle, which is twice the vertical radius, 
the maximum shear stress, the radius keeps the same magnitude regardless of the coordinate 
orientation. It is the second invariant of the two-dimensional stress tensor. 
Stress in three dimensions 
The Mohr construction applied to three-dimensional stress states has three circles: two small circles 
( )1 2σ ,σ  and ( )2 3σ ,σ are tangent at 2σ and lay within the larger ( )1 3σ ,σ circle.  
The three diagonal components 1σ , 2σ  and σ3 of the stress tensor are normal stresses plotted along 
the horizontal axis; non-diagonal components are shear stresses plotted along the vertical axis. All 
possible ( )N Sσ ,σ  points plot on the large ( )1 3σ ,σ Mohr circle or between this circle and the ( )1 2σ ,σ  

and ( )2 3σ ,σ Mohr circles. The diagram area between these three circles is the locus of stress on 
planes of all orientations in three dimensions. 
 

 
 
Mohr diagrams are used extensively in discussions of the fracturing of rock masses because they 
graphically represent the variation of stress with direction and allow finding the stresses on known 
weak planes. 
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Exercise: 
Draw Mohr images of the following state of stress: 

Hydrostatic, uniaxial, axial, triaxial 

Effects of pore fluid pressure 

 Fluid pressure 
Fluid pressure refers to the pressure in and exerted by fluids contained in the cracks and pores of 
granular materials. Rocks within depths of a few kilometers of the crust commonly have either 
intergranular or fracture porosity along which a column of fluids exists up to the surface. If the fluid 
reservoir is in static equilibrium, the fluid pressure fP  is closely approximated by the equation: 

f (f )P = gzρ  

where (f)ρ  is the fluid density, g the acceleration of gravity, and z the depth. This is the hydrostatic 
pressure, which differs from the lithostatic pressure (weight of rocks at the same depth). 
 

Exercise: 
Calculate the gradient of hydrostatic pressure due to a column of pure water and that 

of the lithostatic pressure. 
10 MPa/km – 23-27 MPa/km 
 
In practice, measured fluid pressures are occasionally less than but more often greater than the normal 
hydrostatic pressure. Overpressured fluids are attributed to one or more of several mechanisms such 
as compaction of sediments, diagenetic/metamorphic dehydration of minerals, artesian circulation. 
Tectonic stresses in active areas may also increase the interstitial water pressure. Carbon dioxide 
released from the mantle or other sources is a common abnormally pressured fluid. 

 Effective stress 
The total stress field in a porous solid can be specified in terms of normal and shear components 
across plane surfaces. The solid and its interstitial fluid combined exert the total normal stresses and 
the total shear components. The tensor of total stress (equation 1) expresses the total stress field:  

 
11 12 13

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 
 
 
  

    

in which the stresses due to the fluids have also nine components: 

 
11 12 13

21 22 23

31 32 33

p p p
p p p
p p p

 
 
 
  

 

in which: 
pii = pjj = p 
pij = pji = 0 

because normal (hydrostatic) pressures are equal in all directions and shear stresses of the pore fluids 
are neglected since they are much smaller than those in the solid. Therefore, a diagonal, isotropic 
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matrix (a square matrix that has non-zero elements only along the main diagonal) represents the fluid 
pressure: 

�
p 0 0
0 p 0
0 0 p

� 

The effective stress is the difference between the total stress and fluid pressure fP p= : 
 eff tot fσ =σ -P  

The principal effective stresses eff
1σ , eff

2σ and eff
3σ  concern the solid part of the porous medium only.  

 Changes in confining pressure 
If a material contains a fluid under pressure 

 

Pf, this pressure counteracts with equal intensity in all 
directions the principal stresses due to an applied load. Therefore, the values of all normal stresses on 
any plane are reduced by the value of the fluid pressure 

 

Pf. The values of all shear stresses remain 
the same, indicating that they are independent of the hydrostatic component. In rocks, it corresponds 
to a change in confining pressure.  
 

 
 

The effective mean stress is the difference between the mean stress and the fluid pressure: 
eff eff eff

1 2 31 2 3
eff fP p

3 3
σ + σ + σ σ + σ + σ

σ = = − = σ −  

In a Mohr circle representation, changes in the total normal tress ( )1 3σ + σ  shift the circle along the 
abscissa axis by an amount equal to the pore fluid pressure 

 

Pf, without changing its diameter, i.e. the 
circle moves to the left, towards smaller values of normal stresses and keeps its size. The circle would 
move to the right for a decrease in pore pressure. 
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Stress Ellipsoid 
The stress ellipsoid is a graphical representation of the six parameters of the stress tensor. Three 
mutually perpendicular directions, called the principal directions, and the intensities of the stresses 
in these directions are called the principal stresses. 

 Numerical Approach in two dimensions 
The stress system is first restricted to a two-dimensional plane. 
 

 
 
 

Exercise (to be done with Excel or Matlab) 
* Take a point O on a horizontal plane P. 
A vertical stress of 100 MPa and a horizontal stress of 50 MPa act at O. 
* Using a calculator and the figure below, determine the absolute values of stresses 
for planes inclined at 5° intervals through O.  
* Make separate calculations for the normal, shear and total stresses. 
* Describe variation of stress magnitudes as a function of orientations. 
 

 



27 
 

Force and Stress  jpb, 2020 
 

An ellipse is generated for the total stress, known as the stress ellipse, which is a reduction of the 
stress ellipsoid. 
We can imagine the same exercise 
- on a vertical plane where the vertical stress is 100 MPa and the horizontal stress has an 

intermediate value of 75 MPa. 
- On a horizontal plane where the intensity of the two perpendicular stresses are 75 and 50 MPa, 

respectively. 
The combination of these three stress ellipses around O generates the stress ellipsoid. 

 Analytical approach 
We now consider stress σ acting across a plane P, within the rectangular Cartesian coordinate 
directions Ox, Oy and Oz, with Oz vertical.  
 

 
 

Let n be the unit normal vector defining the plane P and piercing the plane through the point P. The 
direction of the line OP, thus the direction of the plane P, can be expressed by the spherical 
coordinates of n, which are: 

 �
nx = sin θ . cos ϕ
ny = sin θ . sin ϕ
nz = cos θ

 (8) 

The spherical directions are equal to the direction of cosines {cos α ; cos β ; cos θ}, directly obtained 
from the angles between the line normal to the plane and the coordinate axes. Since n is a unit 
vector, these components must satisfy the unit length condition: 

 nx2 + ny2 + nz2 = 1 (9) 

Now one considers the infinitely small tetrahedron bounded by the plane P and by the three other 
triangular faces containing the coordinate axes. The plane cuts the axes Ox, Oy and Oz at points, X, 
Y and Z, respectively. The triangle XOY is the projection parallel to Oz of the face XYZ onto the 
plane xOy. The area of the XYZ face is: 

(1/2).(base XY * height ZH) 
The area of the XOY face is: 

(1/2).( base XY * height OH) 
The ratio between these two faces is simply the ratio OH/ZH, the two sides of the same triangle with 
a right angle in O. A geometrical construction in the plane ZOH shows that OH/ZH = 

 

cosθ = nz . 
The similar reasoning for the projection of XYZ on to the other two coordinate planes shows that the 
proportionality factors are α (projection parallel to Ox) and β (projection parallel to Oy). 
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We now consider equilibrium, which means the balance of forces acting on the infinitely small 
tetrahedron under consideration. Forces applied to each face are decomposed into one normal and 
two shear forces.  

Φxx  Φxy  Φxz 
Φyy  Φyx  Φyz 
Φzz  Φzx  Φzy 

We take XYZ as the unit area on which the force applied F/1 is also a stress vector T  whose 
components parallel to the coordinate axes are xT , yT  and zT . T  is then determined by the simple 
vectorial sum where the cosine directions weigh the vector components: 

 x y zT cos T cos T cos= α + β + θT   (10) 

These three components are each balanced by force components acting in the same direction on the 
three other faces. For example: 
 (area = 1)Tx = Φxx + Φyx + Φzx  (11) 
Areas of the coordinate faces with respect to the XYZ unit area were calculated above as cos α , 
cosβ  and cos θ . Per definition, force components ϕij are stress components σij  and τij multiplied 
by the areas on which they are applied. Then one can write all force components as: 
 

Φxx = nxσxx  Φxy =  nxτxy  Φxz =  nxτxz 
Φyy = nyσyy  Φyx =  nyτyx  Φyz =  nyτyz 
Φzz = nzσzz  Φzx =  nzτzx  Φzy =  nzτzy 

 
Equation (10) becomes: 
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 Tx = nxσxx + nyτyx + nzτzx  (12) 

Absence of rotation implies that τij = τ ji  and equation (11) becomes: 

 Tx = nxσxx + nyτxy + nzτxz  (13) 

With similar equilibrium arguments along the other directions, the coordinate axes of the stress vector 
T relative to n are: 

x xx x xy y xz z

y yz x yy y yz z

z zx x zy y zz z

T n n n

T n n n

T n n n

 = σ + τ + τ
 = τ + σ + τ
 = τ + τ + σ

 

 
These 3 linear equations are written in matrix notation: 

 
xx xy xzx x

y yx yy yz y

z zx zy zz z

T n
T n

T n

 σ τ τ   
    

= τ σ τ    
    τ τ σ     

 (14) 

The 3 X 3 stress matrix that transforms linearly every column vector as n into another column vector 
as T defines the second-order stress tensor. It links any given plane with its associated stress vector. 
It is written in a condensed fashion as the Cauchy’s formula: 

σi = σijnj  
The magic of this formula: Multiplying the stress tensor, treated as a simple matrix, by a unit vector 

jn , which is the normal to a certain plane, one gets the traction vector acting on that plane. 
 

Remember: If A and B are two rectangular arrays of variables, their product C is defined as: 
    

 

C = A.B 
where the elements 

 

cij  of C is obtained from the ith row of A and the jth column of B by multiplying 
one by the other, element by element, and summing the product: 

cij = a ikbkj
k
∑  

AB is defined only if the width (number of columns) of A is equal to the height (number of rows) of 
B and, in general, AB ≠BA. Finally, AB=0 does not imply that either A or B is a null matrix.  
 
The parallelogram construction and equation (12) show that the normal stress σ across the plane with 
the normal n is given by: 

T.n = Txnx + Tyny + Tznz  

( )2 2 2
x x y y z z y z yz x z zx x z xyn n n 2 n n n n n nσ = σ + σ + σ + τ + τ + τ  (15) 

while the corresponding shear stress is: 
τ2 = T2 − σ2 

We are looking for a geometric representation of the variation of stress with direction. The theory can 
be followed most easily for a two-dimensional stress system where the angle xOP = θ.  Then 

xn cos= θ , ny = sinθ  and zn 0= . Equation (9) reduces to: 

σ = σx cos2 θ + σy sin2 θ + 2τxy sinθ cosθ  



30 
 

Force and Stress  jpb, 2020 

In the vertical plane xOz, taking σ parallel to the horizontal axis Ox, the only forces acting on the 
tetrahedron (prism in two-dimension) in the Ox  direction are σx * (area of P) and 1σ  * (area of xOz). 
These forces must balance for the equilibrium of the tetrahedron, so that 
    σx = σ1 (area of xOz / area of P) 
Now, since: 
    Area of xOz = nx  * (area of P), 
(areas are reduced to lines in this 2D projection) one gets: 

σx = nxσ1 
and, by similar arguments, 

y y 2nσ = σ  

z z 3nσ = σ  
Substituting cosine directions from equation (9), it follows that: 

 ( ) ( ) ( )2 2 2 2 2 2
x 1 y 2 z 3 1σ σ + σ σ + σ σ =  (16) 

Equation (16) is the equation of an ellipsoid centered at the origin with its axes parallel to the 
coordinate axes. The ellipsoid semiaxes are in the same direction and have the same magnitudes as 
the principal stresses.  
 

 
 
This stress ellipsoid is a commonly used graphical representation of stress. Its principal axes are 
known as the principal axes of stress, which are mutually perpendicular directions of zero shear 
stress. The direction and magnitude of a radius vector of the stress ellipsoid give a complete 
representation of the stress across the plane conjugated to that radius vector. The radius vector is: 

2 2 2
x y zs = σ + σ + σ  

The ellipsoid is the loci of all s-extremities. Notice that, in general, the plane corresponding to a given 
radius vector is not normal to the radius vector. 
Intuitively, from the known symmetries of the ellipsoid, there are always 3 orthogonal directions (the 
principal axes) for which T and n have the same direction. The normal stress of equation (14) across 
a plane whose normal has direction cosines �nx; ny; nz� is now given by: 
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σ = nx
2σ1 + ny

2σ2 + nz
2σ3 

The magnitude of the shear stress across this plane is: 

τ2 = (σ1 − σ2)2nx2ny2 + (σ2 − σ3)2ny2nz2 + (σ3 − σ1)2nz2nx2 

If the directions are taken as coordinate axes, all shear components are null. The stress tensor 
(equation 14) is then simplified to: 

1

2

3

0 0
T 0 0

0 0

σ 
 = σ 
 σ 

 

 Stress ellipsoids –stress tensor 
The numerically generated ellipse represents a section of the stress tensor in an ellipsoidal form 
within a specific principal plane. The stress tensor is not a single vector. It refers to the entire 
collection of stresses acting on every plane of every conceivable orientation passing through a discrete 
point in a body, specifically the center of the ellipsoid, at a given instant in time.  
To describe the stress tensor, one needs the orientation, size, and shape of the stress ellipsoid. Thus, 
one needs to determine the orientations and lengths of the three principal axes of the stress ellipsoid. 
If one can define the stress tensors at each and every point within a body, one can fully describe a 
stress field, which is the entire collection of stress tensors. This exercise is a fundamental approach 
for evaluating the relationship between stress and strain. 

 Stress field  
When surface forces are applied to a body, the resulting stresses within this body generally vary in 
direction and intensity from point to point. The stress field refers to the distribution of stresses at all 
points throughout the body. The stress field can be portrayed either as a set of stress ellipsoids, or as 
their stress axes, or as stress trajectories. The stress field is homogeneous if both the normal and 
shear components are the same in magnitude and orientation at all points. Otherwise, and commonly 
in geology, it is heterogeneous. The relative uniformity of stress orientation and magnitudes is 
striking, allowing for the mapping of regional stress fields. 

See the World Stress Map:  http://dc-app3-14.gfz-potsdam.de/ 
Two or more stress fields of different origins may be superimposed to give a combined stress field. 
The sources of the stress are manifold, and consequently, stress is unevenly distributed within the 
Earth's lithosphere. Its magnitudes are highest within, or next to, the regions where causative forces 
are exerted. Stress gradually diminishes away due to the elastic and creeping strain energy consumed 
in deforming rocks. The stress gradient is the rate at which stress increases in a particular direction, 
for instance, depth with a normal hydrostatic gradient = 10 MPa/km and an overburden gradient = 23 
MPa/km. Curves of iso-stress-magnitude (stress contours) illustrate such gradients. In the lithosphere, 
stresses result from forces that are transmitted from point to point. Knowing the magnitude and the 
orientation of principal stresses at any point allows for calculating the normal and shear components 
on any plane passing through this point.  

 Stress trajectories 
In two dimensions, on a given surface (e.g., in map view), the stress trajectories are virtual curves 
that image the directions of the principal stresses at all points and link the stress axes of the same 
class. For example, one set of lines determines the direction of the maximum principal stress, and a 
second set determines that of the minimum principal stress. These two sets are everywhere 
orthogonal. Individual trajectories may be curved, but principal stresses must remain at right angles 
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to each other at every point along the curve. Then, stress trajectories portray continuous variation in 
principal stress orientation from one point to another through the body.  
 

 
 
Adjacent trajectories coming closer together indicate stress concentration. 
Principal stresses are equal at isotropic points. Entwining stress trajectories bound positive isotropic 
points; dissociating trajectories define negative isotropic points. 
Principal stresses are all zero at singular points. 

 Slip lines 
Knowing the principal stress trajectories, potential shear surfaces at any point in the stress field are 
the surfaces tangent to the direction of maximum shearing stress at that point. The traces of these 
potential shear surfaces are called slip lines. In two dimensions, two sets of lines represent curves of 
dextral and sinistral senses of shear. They converge towards isotropic points. 

Stress Measurement 
The motivation to measure stresses stems from geological hazards, engineering activity, and resource 
exploration. The stresses initially supported by the rock excavated from mines and boreholes are 
immediately transferred to the surrounding rocks. The resultant stress concentration is well 
understood from elastic theory, so stress measurement can be made indirectly by measuring the rock 
response around the borehole or the mine. The two primary methods for measuring in situ stresses 
using stress concentration around boreholes are near-surface overcoring and hydraulic fracturing. 

 Elastic strain: Overcoring and breakout  
Overcoring consists in installing a strain gauge on the bottom of a tubular borehole. Then a coaxial 
and annular hole is drilled around and deeper with an internal radius smaller than the first hole.  
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This procedure releases stresses from the rock cylinder bearing the gauge, which has become isolated 
from the regionally stressed surrounding. The subsequent elastic deformation of the circular inner 
core into an elliptical one defines the orientation of horizontal stresses, with the long axis of the ellipse 
parallel to the maximum horizontal principal stress, resulting in more relaxation in the most 
compressed direction. This strain can be converted into a stress magnitude if the elastic properties of 
the rock are known.  
After drilling, a circular borehole may become elliptical, or breakout, in response to stresses in the 
surrounding rock. The long axis of the ellipse is parallel to the minimum horizontal stress. 

 Hydraulic fracturing  
Hydraulic fracturing involves injecting fluids into a sealed well and pressurizing it until a fracture is 
generated in the surrounding rock, which is then filled with the coring fluid. The fluid pressure 
required to induce tensile fracture at the wall of the borehole is the breakdown pressure. Fracturing 
will occur if it is equal to the tensile strength σT of the rock, which in turn is assumed to be equal to 
the magnitude of the minimum horizontal effective stress σh,eff

∗ : 

σh,eff
∗ = −σT 

The concept assumes that one principal stress is vertical (representing a near-surface condition) and 
aligned with the vertical wellbore. The magnitude of the vertical stress σv is the weight of overlying 
rocks. The goal is to find the magnitudes of the greater (σH) and smaller (σh) principal stresses in 
the horizontal plane and their orientation. Hydraulic fracturing assumes that cracks form 
perpendicular to the minimum horizontal stress. Hence, measuring the orientation of created 
hydraulic fractures and the breakdown pressure provides insight into the stress tensor. 
However, this technique does not specify the direction of principal stresses. Hydraulic fracture 
initiation also depends on stress regimes and wellbore orientation. 
Once the injection is ceased, the propped fracture becomes a passage for hydrocarbon gas or water 
flow from the drilled reservoir to the well, thus allowing enhanced production. Hydraulic fracturing 
is a practical stimulation technique used to enhance hydrocarbon recovery from low-permeability 
reservoirs. 

 Focal mechanisms  
If an earthquake corresponds to slip on a fault with near optimal orientation for reactivation with 
respect to the regional stress field, the P (for comPression, the ground moves towards the seismic 
station), B and T (dilaTation, motion away from the station) axes define the elastic strain released in 
the earthquake. Their orientation approximates the active principal stress directions s1, s2 and s3, 
respectively. 

 Present-day tectonic stress field 
Stress determination is both incomplete and sparse. Results show that the stress state is 
characteristically heterogeneous and unpredictable in space and time. Extrapolations from individual 
measurements remain very limited in simplifying the real information because local geological 
features govern local perturbations. However, syntheses demonstrate the existence of remarkably 
uniform “Andersonian” stress provinces, with two of the principal stresses, horizontal and vertical 
stress, either equal to σ1 (extensional regime) σ2 (strike-slip regime) or σ3 (compression regime). The 
common occurrence of anthropogenic seismicity during reservoir filling and earthquake-triggered 
earthquakes suggests that the continental crust is globally in a state of frictional equilibrium.  
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Applications to geological structures 
Very little is known concerning the stress fields that exist in rocks during deformation, although it is 
one of the prime goals of the subject to define these fields as closely as possible. The lack of 
knowledge is, in part, due to the complexity of the stress fields that exist in deforming bodies but 
mostly results from an overall lack of information concerning the mechanical properties of rocks. 
The application of normal and shear stresses can be illustrated with reference to two simple geological 
examples: the stress at a fault plane and the stress at a bedding plane undergoing flexural slip folding 
resulting from opposed compressive forces. The sense of fault displacement and bedding-plane slip 
can be predicted if the direction of the force is known, and vice versa. 

Conclusion 
The kinematic analysis identifies four components of deformation: 
- Translation (change in position) 
- Rotation (change in orientation) 
- Dilation (change in size) and 
- Distortion (change in shape). 
Stress is an instantaneous quantity defined as a force per unit area. The stresses at a point are the 
vector components of the stress vectors on the three planes of reference. Mathematically, the 
expression of stress combines traction vectors for all possible planes associated with the point: This 
collection of forces per unit area is a tensor quantity.  
The stress tensor σij is a mathematical structure that describes the relation between two linked vectors: 
the force vector and the plane orientation vector. The first subscript indicates the direction of the 
force, while the second subscript denotes the face of the cube on which it is acting.  
It requires nine numbers and a coordinate system to be defined: it is a second-order tensor. The 9 
components of the stress tensor are the nine components of stresses. Stresses cannot be summed using 
vector addition. 
The state of stress at a point is described by the magnitudes and orientations of the three principal 
stresses or the normal and shear stresses on a plane of known orientation. It can be represented by an 
ellipsoid with axial lengths determined by the three principal stresses. 
The Mohr construction relates stress points to material planes. The stress state σS on planes of varying 
orientation describes a circle passing through σ1 and σ3 on the Mohr diagram, on which the 
magnitudes and orientations of shear stress σS as a function of the normal stress σN can be visualized.  
Stresses in the lithosphere have both tectonic (plate motion, burial, and unburial, as well as magma 
intrusion) and non-tectonic, local origins (thermal expansion and contraction, meteoritic impacts, and 
fluid circulations). The regional uniformity of natural stress fields suggests a dominantly tectonic 
origin. Stress controls deformation. Therefore, understanding stresses is essential to describe, 
quantify, and predict rock deformation and tectonic processes. 
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